
Stability and scheduling in wireless networks with local

pooling

Dariusz Dereniowski∗ Wieslaw Kubiak† Bernard Ries‡ Yori Zwols§

October 15, 2011

Abstract

In a single-hop traffic model in a wireless network with primary interference constraints, a
matching needs to be found in each time slot. This matching then determines the links used
for transmission in that time slot. The matchings however need to be selected so that any
given link occurs in them sufficiently often to keep up with the packet arrival rate on that link,
because otherwise the backlog on that link grows to infinity. We aim at designing an efficient
test of network stability for a class of networks which generalizes the recently defined class of
OLoP(Overall Local Pooling) networks. The test takes the network topology (a graph) and
the link arrival rates as an input and determines, in linear time, whether or not there exists
a sequence of matchings that keeps up with the arrival rates. If the answer is affirmative we
show how to construct, in quadratic time, the sequence with the number of distinct matchings
that grows linearly with the number of vertices in the graph. Finally, we focus on the shortest
possible sequence. We prove that the shortest sequence length does not exceed the least common
denominator of the arrival rates for OLoP networks, and conjecture that it does not exceed twice
the least common denominator of arrival rates for general networks. We then show that this
conjecture holds for all graphs with at most 10 vertices.

Keywords: greedy maximal scheduling, edge coloring, nearly bipartite graphs, scheduling algo-

rithms, throughput maximization, wireless networks

∗Gdańsk University of Technology, Gdańsk, Poland, deren@eti.pg.gda.pl
†Memorial University, St. John’s, Canada, wkubiak@mun.ca
‡Université Paris Dauphine, Paris, France, bernard.ries@dauphine.fr
§McGill University, Montreal, Canada, yori.zwols@mail.mcgill.ca

1

1 Introduction

We begin with introducing a wireless networking problem and reviewing recent results in this field.

The problem provides the main source of motivation for the stability and scheduling problems we

study in this paper.

Consider a graph G = (V,E), in which the vertices in set V represent agents (i.e., transmitters

and receivers) in a communication network, and E ⊆ {ij : i, j ∈ V, i 6= j} is a set of wireless

connections representing pairs of agents between which data flow can occur. At each vertex v ∈ V
of the network, information packets are received over time and these packets must be transmitted

to their destinations, which correspond in our model to the neighbors of that vertex v (such a

model is called single-hop). We assume that time is slotted and that packets are of equal size, each

packet requiring one time slot of service across a link. A stochastic queue is associated with each

edge in the network, representing the packets waiting to be transmitted on this link. We assume

that the stochastic arrivals to edge ij have long term rates λij and are independent of each other.

We denote by λ the vector of the arrival rates λij for every edge ij.

An important issue in operating a wireless communication network is that two connections might

interfere with each other. We focus on the simplest interference model that can be found in

the literature, which is known as the primary interference model. This model states that two

connections interfere with each other if and only if the corresponding edges share a vertex in G.

Thus, at every time slot, the set of connections that are activated should form a matching.

A scheduling algorithm selects a set of edges to activate at each time slot, and transmits packets on

those edges. The goal is to find a scheduling algorithm that, informally speaking, keeps the sizes

of the queues from growing unboundedly when this algorithm is adopted. Clearly, if the values of

the λij ’s are chosen sufficiently large, no algorithm can attain this. Therefore, usually, one defines

the stability region Λ∗ of a graph G (with respect to rates λ) as

Λ∗ =
{
λ ∈ RE(G) : λ < u for some u ∈ conv(MG)

}
,

where MG is the set of all matchings in G and conv(MG) is the convex hull of the characteristic

(0-1) vectors of the elements ofMG (and the ‘<’ sign is componentwise). It should be clear that, for

any λ that is not an element of the closure of Λ∗, there is no algorithm that prevents the queues from

growing unboundedly. On the other hand, one may ask whether there exists a scheduling algorithm

that keeps the queues from growing unboundedly when λ ∈ Λ∗. Formally, this is equivalent to the

condition that the Markov chain that represents the evolution of the queues is positive recurrent

(i.e., all its states are positive recurrent) for all arrival rates λ ∈ Λ∗, using the scheduling algorithm.

If this condition is satisfied, then we say that the scheduling algorithm achieves 100% throughput

on G. For more details regarding the queue evolution process under this model, see [3, 4, 14].

A good first choice for a scheduling algorithm turns out to be the Maximum Weight Matching

algorithm (MWM) that selects, in each time slot, a maximum weight matching in G, where the

weights of the edges are given by the current queue lengths. It was shown in [22] that MWM

achieves 100% throughput on any graph G. However, it is not a tractable algorithm in many

situations because to find an optimal solution it needs centralized computing and full knowledge

of both the network topology and all queue lengths at every time slot. Hence, there has been

1

an increasing interest in simple and potentially distributed algorithms. One example of such an

algorithm is known as the Greedy Maximal Scheduling (GMS) algorithm [12, 17]. This distributed

algorithm effectively selects the set of links served in a greedy fashion according to the queue lengths

at these links (i.e., GMS greedily selects a maximal weight matching). A drawback of using this

algorithm is that, in general, it does not achieve 100% throughput for every graph G. However,

[4] gave a sufficient condition on network graphs (in the primary interference model) for which the

GMS algorithm does achieve 100% throughput. We say that a graph G is OLoP (OLoP stands for

Overall Local Pooling) if, for every subgraph G′ of G, there exists a function w : E(G′)→ [0, 1] (that

depends on G′) such that every inclusion-wise maximal matching M in G′ satisfies
∑

e∈M w(e) = 1.

The sufficient condition from [4] is the following.

Theorem. [4] GMS achieves 100% throughput on every OLoP graph G.

In [2], a complete structural characterization of all OLoP graphs was given. We repeat this char-

acterization in Section 4.1 for completeness.

This paper focuses on the following four problems that are studied for general graphs and GOLoP

graphs (GOLoP stands for Generalized Overall Local Pooling) in particular, the latter being a

generalization of OLoP graphs which we will introduce in Section 4.1.

Problem: Match(G, r)

Input: An undirected, simple graph G = (V,E), a rate function r that assigns to each edge

e ∈ E a rational rate 0 < r(e) ≤ 1.

Question: Does there exist a sequence of matchings M1,M2, . . . in G such that

lim inf
n→∞

|{i : e ∈Mi, i = 1, 2, . . . , n}|
n

≥ r(e) for all e ∈ E? (1)

The problem Match(G, r) falls in the general framework of a problem earlier studied by Grötschel

et al. in [10], and by Hajek and Sasaki in [11]. The problem is known as ‘scheduling links to satisfy

link demand’, where the allowable links being active in a network at any given time must form a

matching. [10] gives a polynomial time algorithm for the problem, and [11] improves the result

by giving a O(|E| · |V |5)-time algorithm that finds a schedule of minimum length which meets all

link demands. (The length of an optimal, i.e. minimum length, schedule can be determined in

O(|V |5)-time [11].) This paper focuses on these problems restricted to the class of GOLoP graphs.

Within this setting, we obtain a linear-time algorithm for answering Match(G, r).

Next, we are interested in the following finite version of Match(G, r):

Problem: K-Match(G, r, k)

Input: An undirected, simple graph G = (V,E), a rate function r that assigns to each edge

e ∈ E a rational rate 0 < r(e) ≤ 1, and a positive integer k.

Question: Are there k matchings M1, . . . ,Mk in G such that

|{i : e ∈Mi}| ≥ kr(e) for all e ∈ E? (2)

2

Although this problem turns out to be NP-complete on general graphs (see Section 3), we obtain

a linear-time algorithm for solving this problem with input restricted to GOLoP graphs. Given an

affirmative answer for K-Match(G, r, k), we naturally consider the following problem.

Problem: Find-Match(G, r, k)

Input: An undirected, simple graph G = (V,E), a rate function r that assigns to each edge

e ∈ E a rational rate 0 < r(e) ≤ 1, and a positive integer k.

Question: Find k matchings M1, . . . ,Mk in G such that

|{i : e ∈Mi}| ≥ kr(e) for all e ∈ E.

We will show that Find-Match(G, r, k) can be solved in O(|V (G)|2) time on GOLoP graphs.

Finally, we will use the solutions to the latter two problems to find in pseudopolynomial time for

the following problem:

Problem: Min-Match(G, r)

Input: An undirected, simple graph G = (V,E), a rate function r that assigns to each edge

e ∈ E a rational rate 0 < r(e) ≤ 1.

Question: Find the smallest k such that there exist matchings M1, . . . ,Mk in G with

|{i : e ∈Mi}| ≥ kr(e) for all e ∈ E.

The paper is organized as follows. Section 1.1 introduces notation and definitions used in the paper.

Section 2 explains the relationship between the problem Match(G, r) and fractional edge-coloring,

and the relationship between the problems K-Match(G, r, k) and Find-Match(G, r, k) and edge-

coloring. The computational complexity of Match(G, r) and K-Match(G, r, k) is briefly analyzed

in Section 3. Section 4.1 gives characterizations of OLoP and GOLoP graphs used throughout the

remaining sections. Sections 4.2, 4.3, and 4.4 give linear-time solutions to K-Match(G, r, k) and

Match(G, r), and find solutions that use onlyO(|V (G)|) distinct matchings for Find-Match(G, r, k)

in O(|V (G)|2) time, respectively, for GOLoP graphs. Section 5.1 shows that, for OLoP graphs, the

least common denominator d for the rate function r is an upper bound for the length of the shortest

schedule, given that the problem K-Match(G, r, k) has an affirmative answer for some k. Further-

more, following a conjecture of Seymour [21], the section conjectures that this bound does not

exceed 2d for general graphs, and it proves the conjecture for all graphs with |V (G)| ≤ 10. Section

5.2 proves an upper bound for GOLoP graphs. Section 5.3 gives a pseudopolynomial time algorithm

for the shortest schedule for GOLoP graphs. The algorithm’s running time depends on the upper

bounds found in Sections 5.1 and 5.2. Finally, Section 6 concludes the paper and presents some

open questions.

1.1 Preliminaries

All graphs in this paper are connected and finite. Let G = (V,E) be a graph. For a vertex v ∈ V ,

let NG(v) denote the set of vertices in G that are adjacent to v, i.e., the neighbors of v. NG(v) is

called the neighborhood of vertex v. Whenever it is clear from the context what G is, we will drop

3

the subscripts and write N(v) = NG(v). The degree of a vertex v, denoted by deg(v), is the number

of neighbors of v, i.e., deg(v) = |N(v)|. The set of edges incident to a vertex v will be denoted

by δ(v). ∆(G) denotes the maximum degree of G, i.e., ∆(G) = maxv∈V {deg(v)}. For X ⊆ V we

denote by G[X] the subgraph induced by X. We write G − v for the subgraph obtained from G

by deleting a vertex v. Similarly, for X ⊆ V , we denote by G − X the subgraph of G obtained

by deleting the set X, i.e., G − X = G[V \ X]. A matching in a graph G = (V,E) is a set of

pairwise non-adjacent edges. The set of all matchings in G is denoted by MG and the set of all

matchings in G containing an edge e ∈ E(G) is denoted by MG(e). For u ∈ V (G), let MG(u)

denote the set of matchings that contain an edge incident with u, and for v ∈ V (G), v 6= u, let

MG(u, v) =MG(u) ∩MG(v). If M ∈MG(u), we say that the matching M saturates u.

Let G = (V,E) be a connected graph. We call x ∈ V a cut-vertex of G if G−x is not connected. We

call a maximal connected induced subgraph B of G such that B has no cut-vertex a block of G. Let

B1, B2, . . . , Bq be the blocks of G. We call the collection {B1, B2, . . . , Bq} the block decomposition

of G. It is known that the block decomposition is unique and that E(B1), E(B2), . . . , E(Bq) (where

E(Bi) denotes the set of edges in Bi, i = 1, . . . , q) form a partition of E (see for instance [23]).

Furthermore, the vertex sets V (Bi) and V (Bj) of every two blocks Bi and Bj , i, j = 1, . . . , q, i 6= j,

intersect in at most one vertex and this vertex is a cut-vertex of G. Block decompositions give a

tree-like decomposition of a graph in the following sense. Construct the block-cutpoint graph of G

by keeping the cut-nodes of G and replacing each block Bi of G by a node bi. Make each cut-node

v adjacent to bi if and only if v ∈ V (Bi). It is known that the block-cutpoint graph of G forms

a tree (e.g., [23]). With this tree-like structure in mind, we say that a block Bi is a leaf block if

it contains at most one cut-node of G. Clearly, if q ≥ 2, then {Bi}
q
i=1 contains at least two leaf

blocks.

A multigraph H is a pair (G,mp) where G is a graph (with no parallel edges) and mp : E(G)→ Z+

is a function. The value of mp(e) is the multiplicity of edge e in the multigraph H. We define

V (H) = V (G), E(H) = E(G), and MH = MG. (Thus, to clarify, MH does not contain two

matchings that differ only in the choice of parallel edges.) For v ∈ V (H), we define degH(v) =∑
e∈δ(v) mp(e). Moreover, ∆(H) = maxv∈V (H) deg(v) denotes the maximum degree of H. An edge

coloring of a multigraph H is a mapping c : E(H)→ 2Z+ such that |c(e)| = mp(e) for all e ∈ E(H)

and if e1, e2 ∈ E(H) share a vertex, then c(e1) ∩ c(e2) = ∅. Let emax = max{z|z ∈ c(e)}. If for

an edge-coloring c we have maxe∈E(H){emax} ≤ k for all e ∈ E, then we call c a k-edge-coloring of

H. The smallest integer k such that H admits a k-edge-coloring is called the chromatic index of

H and is denoted by χ′(H). It is well-known that χ′(H) can be written as the optimal value of the

following integer linear program:

χ′(H) = χ′(G,mp) = minimize
x∈ZMG

+

∑
M∈MH

x(M) (3)

subject to
∑

M∈MH(e)

x(M) = mp(e) for all e ∈ E(H).

A fractional edge coloring of a graphG is a mapping f : MG → R+ such that
∑

M∈MG(e) f(M) = 1.

If for a fractional edge coloring f we have
∑

M∈MG(e) f(M) ≤ k for every edge e, we call f a

fractional k-edge coloring. The smallest integer k such that G admits a fractional k-edge coloring

is called the fractional chromatic index of G and is denoted by χ′f (G).

4

A rate function (for a graph G) is a function r : E(G)→ Q∩(0, 1]. Similar to the degree of a vertex,

for any v ∈ V (G), we will write r(x) =
∑

e∈δ(x) r(e). We will think of rate functions as a continuous

versions of multiplicity functions mp. With this in mind, we introduce the following continuous

version of the fractional chromatic index. For a graph G and a weight function w : E(G) → R+

(we will usually take w to be either a multiplicity function mp, or a rate function r), define

χ′f (G,w) = minimize
x∈RMG

+

∑
M∈MG

x(M) (4)

subject to
∑

M∈MG(e)

x(M) = w(e) for all e ∈ E(G).

Given a multigraph H = (G,mp), define

t(H) = max

{
2|E(H ′)|
|V (H ′)| − 1

: H ′ is an induced subgraph of H, |V (H ′)| is odd, |V (H ′)| ≥ 3

}
.

We have the following fundamental result for the fractional chromatic index of any multigraph.

Theorem 1.1. (Edmonds [5]) χ′f (H) = max{∆(H), t(H)}, for every multigraph H.

2 Relationship with edge-coloring

For a given rate function r and an integer k, we will write dkre for the function e 7→ dkr(e)e. We

have the following equivalence.

(2.1) Let G be a graph, let r be a rate function for G, and let k be an integer. The answer to

K-Match(G, r, k) is yes if and only if χ′(G, dkre) ≤ k.

Proof. If the answer to K-Match(G, r, k) is yes, then there exist k matchings M1, . . . ,Mk in G

such that (2) is satisfied. Then, clearly,

|{i : e ∈Mi}| ≥ dkr(e)e for all e ∈ E

and thus there exist k matchings M ′1, . . . ,M
′
k in G such that

|{i : e ∈M ′i}| = dkr(e)e for all e ∈ E.

We obtain a feasible k-edge-coloring of the multigraph (G, dkre) by setting c(e) = {i : e ∈M ′i}.
Suppose now that there exists a k-edge-coloring c of the multigraph (G, dkre). Define Mi = {e ∈
E : i ∈ c(e)} for i = 1, . . . , k. Clearly, each Mi defines a matching and for each edge e ∈ E we have

|{Mi : e ∈Mi}| = mp(e) = dkr(e)e. Thus the matchings M1, . . . ,Mk satisfy (2). This proves (2.1).

�

We also have the following equivalence:

(2.2) Let G be a graph, let r be a rate function for G, and let k be an integer. The following three

statements are equivalent:

5

(i) χ′f (G, r) ≤ 1;

(ii) The answer to Match(G, r) is yes;

(iii) The answer to K-Match(G, r, k) is yes for some k.

Proof. (i) =⇒ (iii): Suppose that χ′f (G, r) ≤ 1. Consider problem (4) corresponding to χ′f (G, r).

Since the parameters of this linear program are all rational, there exists a solution p(M), M ∈MG

to (4) such that
∑

M∈MG
p(M) ≤ 1 and p(M) is rational for every M ∈ MG. Let d be the least

common denominator of p(M), M ∈ MG. Define q(M) = dp(M) and let T =
∑

M∈MG
q(M).

Then, q(M) is integral for all M ∈ MG and so is T . Notice that T = dχ′f (G, r) ≤ d. Let {Mi}di=1

be such that Mi = M for exactly q(M) values of i for each M ∈ MG (filling up with ∅ matchings

if necessary). Now,

|{i : e ∈Mi}| =
∑

M∈MG(e)

q(M) = d
∑

M∈MG(e)

p(M) = dr(e),

as required. This implies that (iii) holds with k = d.

(iii) =⇒ (ii): Let {Mi}ki=1 be such that |{i : e ∈ Mi, i = 1, 2, . . . , k}| ≥ kr(e) for all e ∈ E(G).

Let {M ′i}∞i=1 be the sequence constructed by infinitely repeating the sequence {Mi}ki=1. Then,

lim
n→∞

|{t : e∈M ′i , i=1,2,...,n}|
n = |{i : e∈Mi, i=1,2,...,k}|

k ≥ r(e) for every e ∈ E. Thus, the answer to

Match(G, r) is yes, proving that (ii) holds.

(ii) =⇒ (i): Suppose that the answer to Match(G, r) is yes. Let {Mi}∞i=1 be a sequence of

matchings satisfying (1). Let e ∈ E. Since every bounded sequence {xn} ⊆ R has a subsequence

that converges to lim inf
n→∞

xn, we can replace {Mi}∞i=1 by a subsequence {Mtj
}∞j=1 such that

lim
n→∞

|{ij : e ∈Mij
, j = 1, 2, . . . , n}|
n

= lim inf
n→∞

|{i : e ∈Mi, i = 1, 2, . . . , n}|
n

≥ r(e).

Thus, we may, since |E| is finite and by iteratively taking subsequences in this fashion, assume that

for all e ∈ E

λ(e) := lim
n→∞

|{i : e ∈Mi, i = 1, 2, . . . , n}|
n

= lim inf
n→∞

|{i : e ∈Mi, i = 1, 2, . . . , n}|
n

≥ r(e).

By replacing some matchings Mi by subsets M ′i ⊆Mi if necessary, we may assume that λ(e) = r(e)

for all e ∈ E. Likewise, we may assume that

p(M) := lim
n→∞

|{i : Mi = M, i = 1, 2, . . . , n}|
n

= lim inf
n→∞

|{i : Mi = M, i = 1, 2, . . . , n}|
n

.

Clearly, we have
∑

M∈MG
p(M) = 1. Now, {p(M)} is a solution to (4) with objective value 1, thus

proving that χ′f (G, r) ≤ 1. This proves the lemma. �

3 Complexity of Match(G, r) and K-Match(G, r, k) for general graphs

In this section we will consider the problems Match(G, r) and K-Match(G, r, k) from a complexity

point of view. For the former problem, we show that it is polynomial-time solvable. Though this

was already shown in [11], we present here a new algorithm that improves the complexity of the

one given in [11], where a O(|V (G)|5)-time algorithm has been given.

6

(3.1) The problem Match(G, r) can be solved in O(|V (G)|4) time.

Proof. Let P be the matching polyhedron corresponding to G (as defined by Edmonds [5]),

i.e. P = conv {eM : M ∈MG}, where eM is the |E(G)|-dimensional 0-1 characteristic vector of

M . We claim that χ′f (G, r) ≤ 1 if and only if r ∈ P. This is sufficient due to (2.2). To prove

the claim, suppose that r ∈ P. Then, r =
∑

M∈MG
p(M)eM for some p : MG → [0, 1] with∑

M∈MG
p(M) = 1. It follows that {p(M)} is a feasible solution to (4) ensuring that χ′f (G, r) ≤ 1.

Conversely, suppose that χ′f (G, r) ≤ 1. Let {p(M)} be a solution to (4) such that
∑

M∈MG
p(M) =

1. Such a solution can always be obtained by sufficiently increasing p(∅) if needed. By (4), we have∑
M∈MG(e) p(M) = r(e) for all e ∈ E. Thus, r =

∑
M∈MG

p(M)eM , which shows that r ∈ P.

This proves the claim. Finally, the test whether r ∈ P can be done in polynomial time using the

Padberg-Rao [18] separation algorithm. Moreover, Letchford, Reinelt and Theis [16] proved that

the test can be done in O(|V (G)|4) time. �

Although the complexity of Match(G, r) is O(|V (G)|4) for general graphs, we will see in Section

4.3 that Match(G, r) can be solved in linear time if G is a GOLoP graph (see 4.1 for the definition

of a GOLoP graph). For the K-Match(G, r, k) problem, we show the following using (2.1).

(3.2) K-Match(G, r, k) is NP-complete in the strong sense.

Proof. We will use a transformation from the k-edge coloring problem which is known to be

NP-complete (see [13]). Consider the k-edge coloring problem on a graph G = (V,E). We define

a rate function r on E such that r(e) = 1
k for each edge e ∈ E. Thus we obtain an instance of

the K-Match(G, r, k) problem. Now using (2.1), we immediately conclude that both problems are

equivalent and hence K-Match(G, r, k) is NP-complete in the strong sense. �

4 GOLoP graphs

In this section we first concentrate on the class of graphs for which the Greedy Maximal Scheduling

(GMS) algorithm is optimal, that is, it achieves 100% throughput. This class of graphs has been

characterized in [2]; as already mentioned in Section 1, these graphs are called OLoP graphs.

Later in this section we will define another class of graphs which represents a generalization of

OLoP graphs and which will be called GOLoP. Given a GOLoP graph G = (V,E) with a rate

function r and a positive integer k, we are interested in solving Match(G, r), K-Match(G, r, k)

and Find-Match(G, r, k).

4.1 Characterization of OLoP graphs; GOLoP graphs

We start with a characterization of OLoP graphs (see [2]). We will do this in terms of the block

decomposition (see Section 1.1). It turns out that the block decomposition of an OLoP graph is

relatively simple in the sense that there are only two types of blocks. The types are defined by the

following two families of graphs.

7

B1: Construct B1 as follows. Let H be a graph with V (H) = {c1, c2, . . . , ck}, with k ∈ {5, 7},
such that

1. c1-c2- · · · -ck-c1 is a cycle;

2. if k = 5, then the other adjacencies are arbitrary; if k = 7, then all other pairs are

non-adjacent, except possibly {c1, c4}, {c1, c5} and {c4, c7}.
Then, H ∈ B1.
Now iteratively perform the following operation. Let H ′ ∈ B1 and let x ∈ V (H ′) with

deg(x) = 2. Construct H ′′ from H ′ by adding a vertex x′ such that N(x′) = N(x). x′ is

called a non-adjacent clone of x. Then, H ′′ ∈ B1. We say that a graph is of the B1 type if it

is isomorphic to a graph in B1.
B2: Let B2 = {K2,K3,K4} ∪

{
K2,t,K

+
2,t : t ≥ 2

}
, where K+

2,t is constructed from K2,t by adding

an edge between the two vertices on the side of the bipartition that has cardinality 2. We say

that a graph is of the B2 type, if it is isomorphic to a graph in B2.
In simple words, graphs of the B1 type are constructed as follows. Starting with a cycle of length

five or seven. Then we may add some additional edges between vertex of the cycle, subject to some

constraints. Finally, we may iteratively take a vertex x of degree 2 and add a non-adjacent clone

x′ of x. The following result characterizes OLoP graphs.

(4.1) ([2]) Let G = (V,E) be a graph and let {B1, . . . , Bq} be its block decomposition. G is an

OLoP graph if and only if at most one block of G is of the B1 type and all other blocks are of the

B2 type.

It follows from (4.1) that OLoP graphs can be constructed by starting with a block that is either

of the B1 or of the B2 type, and then iteratively adding a block of the B2 type by ‘glueing’ it on an

arbitrary vertex.

This motivates the following definition of a generalized OLoP graph. Let b ≥ 1 be an integer. A

graph G is called GOLoP(b) if every block of G can be obtained from a connected graph on at most

b vertices by iteratively non-adjacent cloning a vertex of degree two. We say that a multigraph

H = (G,mp) is GOLoP(b) if the graph G is GOLoP(b). It is not hard to see that every OLoP

graph is also a GOLoP(7) graph.

To deal with GOLoP graphs, we will frequently use the following notation. Let G be a GOLoP

graph. Let C1, . . . , Cp be maximal sets of vertices of degree two (in G) such that |Ci| ≥ 2 and

all vertices in set Ci have the same two neighbors ui and vi. We refere to these sets as non-

adjecent clones in G. Choose p maximal as well. Consider the auxiliary graph G′ constructed from

G −
⋃p
i=1Ci by adding new vertices a1, . . . , ap such that, for i ∈ [p], ai is adjacent to precisely ui

and vi, and by adding new edges uivi for all i ∈ [p]. Let W = {a1, . . . , ap}. We call the pair (G′,W)

the collapsed graph associated with G. For i ∈ [p], let Fi = H[Ci ∪ {ui, vi}]. See Figure 1.

It was shown in [2] that OLoP graphs have O(|V (G)|) edges. The proof of this result generalizes

easily to the setting of GOLoP(b). We include the generalization for completeness:

(4.2) Let b be a fixed integer and let G be a GOLoP(b) graph. Then, |E(G)| = O(|V (G)|).

8

v1 = u2

u1 v2

C1 C2

Multigraph H

v1 = u2

u1 v2

a1 a2

Collapsed graph (G′, {a1, a2})

u1 v1
C1

Multigraph F1

Figure 1: The multigraph H and the sets Ci (left), the corresponding collapsed graph (G′,W) (middle), and one

of the multigraphs F1, F2 (right). In this figure, we added multiple edges to represent the values of the

function mp.

Proof. We may assume that G is connected, because otherwise the lemma follows from considering

each connected component of G. First, let B be a block of a GOLoP(b) graph. Let B′ be the

collapsed graph of B. Then, since |V (B)| ≤ b, we have |E(B)| ≤
(
b
2

)
. Since the degree of every

clone is exactly two, there are at most |V (B)| − 2 non-adjacent clones in B. It follows that

|E(B)| ≤
(
b
2

)
+ 2(|V (B)| − 2).

Now let G be a GOLoP(b) graph and let q be the number of blocks of the block-decomposition of G.

We will prove by induction the stronger statement that |E(G)| ≤ q
(
b
2

)
+ 2|V (G)|. This will imply

the lemma because q = O(|V (G)|) and b is a constant. So consider G and let {B1, B2, . . . , Bq}
be the block decomposition of G. We prove the lemma by induction on q. If q = 1, then G has

exactly one block and the result follows from the above. So we may assume that q ≥ 2. It follows

that G has at least one leaf-block B. Let x be the unique cut-vertex of G in V (B). We have

|E(B)| ≤
(
b
2

)
+2(|V (B)|−2) and, by the induction hypothesis, G[(V (G)\V (B))∪{x}] has at most

(q − 1)
(
b
2

)
+ 2(|V (G)| − |V (B)| + 1) edges. Therefore, |E(G)| ≤ (q − 1)

(
b
2

)
+ 2(|V (G)| − |V (B)| +

1) +
(
b
2

)
+ 2(|V (B)| − 2) = q

(
b
2

)
+ 2(|V (G)| − 1), which proves the statement. This concludes the

proof of (4.2). �

Since finding the block decomposition of a graph G can be done in O(|V (G)|+ |E(G)|) time (see,

e.g., [9]), (4.2) has the following corollary:

(4.3) Let b be a fixed integer and let G be a GOLoP(b) graph. Finding the block decomposition of

G can be done in O(|V (G)|) time.

4.2 K-Match(G, r, k) for GOLoP graphs

In this section, it will be notationally more convenient to think of an edge coloring of a multigraph

H = (G,mp) as a schedule. We need to introduce a bit more notation. A schedule (of length k)

is a function S : {1, . . . , k} → MH . For e ∈ E(H), let TS(e) =
∑k

t=1 1(e ∈ S(t)) (where 1 is the

indicator function). Informally speaking, TS(e) is the total amount of time schedule S spends on

edge e. Likewise, for vertices u, v ∈ V (H), let TS(u, v) =
∑k

t=1 1(S(t) covers both u and v) and,

for a matching M ∈ MH , let TS(M) =
∑k

t=1 1(S(t) = M). A schedule S is said to be feasible for

H if TS(e) = mp(e) for all e ∈ E(H). We state the following two observations without a proof:

9

(4.4) Let H be a multigraph and let k be an integer. Then, χ′(H) ≤ k if and only if there exists a

feasible schedule of length k for H.

(4.5) Let H = (G,mp) be a multigraph and let x be a cut-vertex of H. Let K1, . . . ,Kp be the

connected components of H − x. Then,

χ′(H) = max

[
deg(x), max

i=1,...,p

{
χ′(H[V (Ki) ∪ {x}])

}]
.

This latter observation allows us to concentrate on the blocks of GOLoP multigraphs. To deal with

the sets of clones in GOLoP multigraphs, we start with a lemma for bipartite multigraphs in which

one side of the bipartition has exactly two vertices.

(4.6) Let F be a bipartite multigraph on vertex sets X,Y with X = {u, v}. Then, for τ ∈ Z+, there

exists a feasible schedule S for F such that TS(u, v) = τ if and only if

τ ≤ deg(u) + deg(v)−∆(F). (5)

Moreover, for all τ satisfying (5), there exists a feasible schedule of length deg(u) + deg(v)− τ such

that TS(u, v) = τ .

Proof. Since we are always working with F in this proof, we will drop the subscript F from MF ,

MF (e) and MF (u, v). Let

T ∗ = max
x∈ZM+

 ∑
M∈M(u,v)

x(M)

∣∣∣∣∣∣
∑

M∈M(e)

x(M) = deg(e) for all e ∈ E(F)

 . (6)

We first claim that:

(∗) T ∗ = deg(u) + deg(v)−∆(F).

Consider an optimal solution x(M) to the optimization problem in (6). Let Au = M(u) \
M(v) and Av = M(v) \M(u). Notice that the sets Au, Av and M(u, v) are disjoint and

thatM = Au∪Av∪M(u, v)∪{∅}. We may without loss of generality assume that x(∅) = 0.

Observe that ∑
M∈Au∪M(u,v)

x(M) = deg(u), and
∑

M∈Av∪M(u,v)

x(M) = deg(v).

This implies that ∑
M∈M

x(M) = deg(u) + deg(v)−
∑

M∈M(u,v)

x(M),

and, by replacing the objective in (6) and taking out the constants, it follows that

T ∗ = deg(u) + deg(v)− min
x∈ZM+

 ∑
M∈M

x(M)

∣∣∣∣∣∣
∑

M∈M(e)

x(M) = deg(e) for all e ∈ E(F)

 .

(7)

Since the optimization problem in the right hand side of this equation has optimal value

χ′(F) (see (3)) and χ′(F) = ∆(F) by Kőnig’s theorem [15], this proves (∗). �

10

It follows from (∗) that it suffices to prove that there exists a feasible schedule S for F such

that TS(u, v) = τ if and only if τ ≤ T ∗. So assume that there exists a feasible schedule S with

TS(u, v) = τ ≥ T ∗ + 1. Then, setting x(M) = TS(M) for all M ∈ M, we obtain a solution for (6)

with objective value τ ≥ T ∗ + 1, a contradiction.

Next, suppose that 0 ≤ τ ≤ T ∗. Let x(M) be an optimal solution to (6). Let M1, . . . ,Mq be a

sequence of matchings constructed by repeating each matching M ∈M exactly x(M) times. Thus,

q =
∑

M∈M x(M) = ∆(F). We can arrange this sequence in such a way that the first T ∗ matchings

are matchings in M(u, v) and the remaining q − T ∗ matchings are matchings in M \M(u, v).

Construct a schedule S as follows:

• For t = 1, . . . , τ , set S(t) = Mt.

• For i = 1, . . . , T ∗ − τ , write {e1, e2} = Mτ+i and set S(τ + 2i− 1) = {e1}, S(τ + 2i) = {e2}.
• For i = 1, . . . , q − T ∗, set S(2T ∗ − τ + i) = MT ∗+i.

It is straightforward to check that S is feasible and TS(u, v) = τ . Moreover, the length of S is

2T ∗ − τ + q − T ∗ = q + T ∗ − τ = deg(u) + deg(v)− τ . This proves (4.6). �

Having dealt with the sets of clones in GOLoP multigraphs, we can now prove the following:

(4.7) Let b be a fixed integer and let H be a GOLoP(b) multigraph. Then, χ′(H) can be determined

in O(|V (H)|) time.

Proof. Let H = (G,mpH). Since, by (4.3), the block-decomposition of a GOLoP(b) graph can be

found in O(|V (G)|) = O(|V (H)|) time, it follows from (4.5) that it suffices to prove the lemma for

the blocks of H. So we may assume that H is 2-connected.

Let (G′,W) be the collapsed graph associated with G and let p, C1, . . . , Cp, F1, . . . , Fp as in the

definition of the collapsed graph. By the maximality of the sets C1, . . . , Cp, every set of clones Ci
has a unique pair of common neighbors {ui, vi}. Since ui and vi are the vertices of the graph on at

most b vertices from which H was constructed by iteratively cloning vertices of degree two, there

are at most
(
b
2

)
choices of ui and vi and, hence, p ≤

(
b
2

)
. Let T ∗i = degFi

(ui) + degFi
(vi)−∆(Fi).

For conciseness, we will write M′ for MG′ and M′(e) for MG′(e). We will construct an integer

linear programming problem whose objective value is χ′(H), and whose variables correspond to the

matchings in G′. The idea is that the edges uivi in matchings in G′ will play the role of pairs of

edges {uic, vic′} in matchings in H with distinct c, c′ ∈ Ci. Consider the following integer linear

programming problem.

z∗ = minimize
x∈ZM′+

∑
M∈M′

x(M) (8)

s.t.
∑

M∈M′(e)

x(M) = mpH(e) for all e ∈ E(G′) \
p⋃
i=1

{uiai, viai, uivi} (8a)

∑
M∈M′(zai)
∪M′(uivi)

x(M) =
∑
c∈Ci

mpH(zc) for all z ∈ {ui, vi}, i ∈ [p] (8b)

11

∑
M∈M′(uivi)

x(M) ≤ T ∗i for all i ∈ [p]. (8c)

Constructing the problem means calculating the values of T ∗i , which can clearly be done in O(|Ci|)
time. Since p ≤

(
b
2

)
, the problem is an integer linear programming problem with O(1) variables

and constraints. Using Eisenbrand’s algorithm for integer linear programming in fixed dimension

[7], this problem can be solved in O(1) time. Thus, the overall complexity of computing z∗ is

O(|V (H)|).
We claim that z∗ = χ′(H). First, to prove that z∗ ≥ χ′(H), we claim that any solution to (8)

can be turned into a feasible schedule for H of length z∗ with the help of (4.6). To see this,

consider an optimal solution {x(M)}M∈M′ of (8). We can, by the constraints of (8), construct a

function S′ : {1, . . . , z∗} →M′ such that TS′(e) = mpH(e) for all e ∈ E(G′) \
⋃p
i=1{uiai, viai, uivi},

TS′(zai) + TS′(uivi) =
∑

c∈Ci
mpH(zc) for all z ∈ {ui, vi}, i ∈ [p], and TS′(uivi) ≤ T ∗i for all i ∈ [p].

S′ is not a schedule because S′ is defined on the matchings of G′ and not on the matchings of H.

We will turn S′ into a schedule for H as follows. Let S(0) = S′. We will iteratively construct

a sequence S(1), . . . , S(p) of functions from {1, . . . , z∗} to M′ ∪MH , the last of which will be a

schedule for H. For i ∈ [p], do the following. Let τi =
∑

M∈M′(uivi) x(M). By (8c), τi ≤ T ∗i . It

follows from (4.6) that there exists a feasible schedule Si : {1, . . . ,degFi
(ui)+degFi

(vi)−τi} →MFi

such that TSi
(ui, vi) = τi. Let Zi = {t | S(i−1)(t) ∈ M′(uiai) ∪M′(viai) ∪M′(uivi)}. It follows

from (8b) that

|Zi| =
∑
c∈Ci

mpH(uic) +
∑
c∈Ci

mpH(vic)− τi = degFi
(ui) + degFi

(vi)− τi.

Let φi : Zi → {1,degFi
(ui) + degFi

(vi)− τi} be a bijection such that, for all t ∈ Zi, Si(φi(t)) covers

both ui and vi if and only if uivi ∈ S(i−1)(t). Now, for all t ∈ {1, . . . , z∗}, set

S(i)(t) =

{(
S(i−1)(t) \ {uiai, viai, uivi}

)
∪ Si(φi(t)) for t ∈ Zi,

S(i−1)(t) otherwise.

Observe that TS(i)(uic) = mpFi
(uic) and TS(i)(vic) = mpFi

(vic) for all c ∈ Ci. Moreover, TS(i)(e) =

TS(i−1)(e) for all e ∈ E(H) ∪ E(G′) \ (E(Fi) ∪ {uiai, viai, uivi}).
After having done this for all i ∈ [p], let S = S(p). Then, S(t) ∈ MH for all t ∈ {1, . . . , z∗} and

TS(e) = mpH(e) for all e ∈ E(H). Thus, S is a feasible schedule of length z∗ for H, implying by

(4.4) that χ′(H) ≤ z∗.
To prove that χ′(H) ≥ z∗, consider a schedule S : [χ′(H)]→MH of length χ′(H). Such a schedule

exists because of (4.4). For all t ∈ [χ′(H)], let Iu(t) ⊆ [p] (resp. Iv(t)) be the set of all indices i

such that uic ∈ S(t) (resp. vic ∈ S(t)) for some c ∈ Ci. Define

S′(t) =

(
S(t) \

p⋃
i=1

E(Fi)

)
∪

 ⋃
i∈Iu(t)\Iv(t)

{uiai}

 ∪
 ⋃
i∈Iv(t)\Iu(t)

{viai}

 ∪
 ⋃
i∈Iu(t)∩Iv(t)

{uivi}



12

and, for M ∈ M′, let x(M) = TS′(M). We claim that x is a solution of (8). It is straightforward

to see that S′(t) ∈M′ for all t. Next, observe that, for all e ∈ E(G′) \ ∪pi=1{uiai, viai, uivi},∑
M∈M′(e)

x(M) = TS′(e) =
∣∣{t : e ∈ S′(t)

}∣∣ = |{t : e ∈ S(t)}| = TS(e) = mpH(e).

Moreover, we have, for each zai with z ∈ {ui, vi} and i ∈ [p],∑
M∈M′(zai)
∪M′(uivi)

x(M) = TS′(zai) + TS′(uivi) = |{t : zc ∈ S(t), c ∈ Ci}| =
∑
c∈Ci

TS(zc) =
∑
c∈Ci

mpH(zc).

Next, observe that the schedule S implies a schedule Si for Fi. It follows from (4.6) that TSi
(ui, vi) ≤

T ∗i . Therefore, ∑
M∈M′(ui,vi)

x(M) = TS′(ui, vi) = |{t : i ∈ Iu(t) ∩ Iv(t)}| = TSi
(ui, vi) ≤ T

∗
i .

This proves that x(M) is a solution to (8), thereby proving that z∗ ≤ χ′(H). This proves (4.7). �

This resolves our second problem.

(4.8) Let b and k be fixed integers. Let G be a GOLoP(b) graph, let r be a rate function for G.

Then K-Match(G, r, k) can be solved in O(|V (G)|) time.

Proof. It follows from (2.1) that the answer to K-Match(G, r, k) is yes if and only if χ′(G, dkre) ≤
k. The theorem follows from (4.7). �

4.3 Match(G, r) for GOLoP graphs

In this section, we focus on Match(G, r) for GOLoP graphs. We will use an algorithm that is very

similar to the algorithm used for the K-Match(G, r, k) problem in the previous section. We will

do this by proving continuous versions of the results from the previous section.

By duplicating edges, (4.5) generalizes easily to the setting of the fractional chromatic index of

weighted graphs. To be precise, we have the following:

(4.9) Let F be a graph, let r be a rate function for E(F) and let K1, . . . ,Kp be the connected

components of F − x. Then, letting ri = r|E(F |Ki)
for i ∈ [p], it holds that

χ′f (F, r) = max

 ∑
e∈δ(x)

r(e), max
i=1,...,p

{
χ′f (F [V (Ki) ∪ {x}], ri)

} .
As in the previous section, it will be notationally more convenient to think of a fractional edge

coloring of a weighted graph as a schedule. Other than in the previous section, our schedule will

now be a function that is defined on a continuous time range. Let us make some definitions. For

13

T ≥ 0, a schedule (of length T) is a piecewise constant function S : [0, T] →MG. For e ∈ E(G),

let TS(e) =
∫ T
0 1(e ∈ S(t))dt (where 1 is the indicator function). Informally speaking, TS(e) is the

total amount of time schedule S spends on edge e. Likewise, for vertices u, v ∈ V (G), let TS(u, v) =∫ T
0 1(S(t) covers both u and v)dt and, for a matching M ∈ MG, let TS(M) =

∫ T
0 1(S(t) = M)dt.

A schedule S is said to be r-feasible (for G) if TS(e) = r(e) for all e ∈ E(G).

We state the following obvious result without a proof:

(4.10) χ′f (G, r) ≤ t if and only if there exists an r-feasible schedule of length t for G.

We have the following fractional version of Kőnig’s theorem, which easily follows from Kőnig’s

original theorem by standard compactness arguments.

(4.11) Let G be a bipartite graph and let r be a rate function for G. Then χ′f (G, r) = maxu∈V (G){r(u)}.

We start with the following continuous version of (4.6).

(4.12) Let F be a bipartite graph on vertex sets X,Y with X = {u, v} and let r be a rate function

for H. Then there exists an r-feasible schedule S for F such that TS(u, v) = τ if and only if

0 ≤ τ ≤ r(u) + r(v) − χ′f (F, r). Moreover, if 0 ≤ τ ≤ r(u) + r(v) − χ′f (F, r), then there exists an

r-feasible schedule of length r(u) + r(v)− τ such that TS(u, v) = τ .

Proof. First suppose that 0 ≤ τ ≤ r(u) + r(v) − χ′f (F, r). Since r(e) is rational for all e ∈
E(F), there exists a positive integer d such that dr(e) is integral for all e ∈ E(F). Notice that

χ′f (F, r) = 1
dχ
′(F, rd) = 1

d∆(F, rd)) and r(e) = 1
dmp(F,rd)(e). Since dτ ≤ dr(u)+dr(v)−dχ′f (F, r) =

mp(F,rd)(u)+mp(F,rd)(v)−∆(F, rd), it follows from (4.6) that there exists a feasible schedule S′ for

(F, rd) such that TS′(u, v) = dτ and such that S′ is of length dr(u) + dr(v)− dχ′f (F, r). Clearly, S′

yields an r-feasible schedule S for F such that TS(u, v) = τ and the length of S is r(u) + r(v)− τ .

Conversely, suppose that τ > r(u)+r(v)−χ′f (F, r) and suppose that there exist r-feasible schedule

S for F such that TS(u, v) = τ . Since such a schedule can be found by means of a linear program

with rational parameters, we may assume that TS(e) is rational for all e ∈ E(G). In particular, there

exists an integer d such that dTS(M) and dTS(e) is integral for all M ∈ MF and all e ∈ E(F).

Now construct a function S′ : {1, . . . , d|S|} → MF by repeating matching M exactly dTS(M)

times. Clearly, S′ is a feasible schedule for M(F)r,d such that TS′(u, v) = dTS(u, v) = dτ while

dτ > dr(u) + dr(v)− dχ′f (F, r) = mp(F,rd)(u) + mp(F,rd)(v)−∆(F, rd), contrary to (4.6). �

The previous claim allows us to deal with the blocks of GOLoP graphs:

(4.13) Let G be a graph in GOLoP(b) and let r be a rate function for G. Then, χ′f (G, r) can be

determined in O(|V (G)|) time.

Proof. As in the proof of (4.13), we may assume that G is 2-connected because, by (4.3), the

block-decomposition of a GOLoP(b) graph can be found in O(|V (G)|) time. Let p, C1, . . . , Cp, ui,

vi, G
′, a1, . . . , ap,M′,M′(e) be as in (4.7). (See Figure 1.) Let Hi = G[Ci ∪ {ui, vi}], ri = r|E(Hi)

,

14

and T ∗∗i = ri(ui) + ri(vi)− χ′f (Hi, ri). Consider the following linear program.

z∗∗ = minimize
x∈RM′+

∑
M∈M′

x(M)

subject to
∑

M∈M′(e)

x(M) = r(e) for all e ∈ E(G′) \
p⋃
i=1

{uiai, viai, uivi} (9)

∑
M∈M′(zai)
∪M′(uivi)

x(M) =
∑
c∈Ci

r(zc) for all z ∈ {ui, vi}, i ∈ [p]

∑
M∈M′(uivi)

x(M) ≤ T ∗∗i for all i ∈ [p].

Since p ≤
(
b
2

)
, it follows that this linear program contains a constant number of variables and

constraints. Constructing the linear program means calculating the values of T ∗∗i , which can be

done in O(|Ci|) time by (4.11). Thus, the overall complexity of computing z∗∗ is O(|V (G)|).
We claim that z∗∗ = χ′f (G, r). To see this, let x(M) be an optimal solution of (9). Since the

right-hand side values of the constraints in (9) are rational, we may assume that x(M) is rational

for all M ∈M′. Therefore, there exists an integer d such that dx(M) and dr(e) are integral for all

M ∈M′ and all e ∈ E(G). Now, observe that (9) is the LP-relaxation of (8) in (4.7) applied to the

multigraph (G, ddre), where all the right-hand side values of the constraints have been multiplied

by d. In particular, notice that the value of T ∗i in (8) satisfies

T ∗i = mp(Hi,rd)
(u) + mp(Hi,rd)

(v)−∆(Hi, rd) = dT ∗∗i .

Thus, dx(M) is an optimal solution of (8). Let z∗ be the corresponding optimal objective value.

It follows from the proof of (4.7) that dz∗∗ = z∗ = χ′(G, dr) = dχ′f (G, r), which implies that

z∗∗ = χ′f (G, r). This proves (4.13). �

It now follows immediately from (2.2) and (4.13) that Match(G, r) can be solved in linear time

for GOLoP graphs:

(4.14) Let b ≥ 1. Let G be a GOLoP(b) graph and let r be a rate function for G. The problem

Match(G, r) can be solved in O(|V (G)|) time.

4.4 Find-Match(G, r, k) for GOLoP graphs

We have described, in Section 4.2, a linear-time algorithm to verify whether the chromatic index

of a GOLoP multigraph (G, dkre) is at most k. In this section, we show that this algorithm can

be turned into a quadratic-time algorithm to find a schedule of length k for G with respect to r,

if such a schedule exists. In order to make the computation efficient, we store each schedule as a

set of pairs (M, `), where M is a matching in G and ` is the number of occurences of M in the

schedule.

We start by obtaining a pseudo-schedule Z being a collection of schedules for all blocks of G, and

then show how to assemble the schedule for G using Z. We begin with details of Z. Let G be a

15

graph, let B1, . . . , Bq be the blocks of G, and let Cj1 , . . . , C
j
pj

be the sets of nonadjacent clones in

block Bj . For j ∈ [q] and i ∈ [pj], let (Bj′, Cji) be the collapsed graph associated with Bj , and let

uji , v
j
i be the common neighbors of the vertices in Cji . Finally, let F ji = G[Cji ∪ {u

j
i , v

j
i }]. Define a

pseudo-schedule for G as Z =
(
(Z1, Z1

1 , . . . , Z
1
p1

), . . . , (Zq, Zq1 , . . . , Z
q
pq)
)
, where Zj is a schedule for

Bj′ and Zji is a schedule for F ji . Note that, each Zj and Zji is a list of pairs (M, `), with M being

a matching in the relevant graph and ` being the number of occurences of M in the corresponding

schedule. Define

c(Z, x) =
∑
j∈[q]

∑
(M,`)∈Zj

and M covers x

`, for any cut-vertex x of G,

|Zj | =
∑

(M,`)∈Zj

`, for j ∈ [q],

|Z| = max

{
max
j∈[q]
|Zj |, max{c(Z, x) : x is a cut-vertex of G}

}
.

Here, |Zj | denotes the length of schedule Zj , c(Z, x) denotes the number of matchings in Z that

cover x, and |Z| denotes the length of pseudo-schedule Z.

First we give an algorithm that computes Z of length k in linear time.

Algorithm Find-Pseudo-Schedule

Input: A GOLoP graph G and a rate function r for E(G).

Output: Either a pseudo-schedule Z of length at most k for G with respect to r, or the message

that no such pseudo-schedule exists.

(1) Find the block decomposition B1, . . . , Bq of G.

(2) If any cut-vertex x ∈ V (G) satisfies
∑

e∈δ(x) dr(e)ke > k, then terminate because no schedule

of length at most k exists for G with respect to r.

(3) For each j ∈ [q]:

(3a) Construct Hj = (Bj , dkrje), where rj = r|E(Bj)
.

(3b) Identify the sets Cj1 , . . . , C
j
pj

and the vertices uji and vji , i ∈ [pj].

(3c) Solve the integer linear program (8) corresponding to Bj′ to construct Zj . If the optimal

value of the IP is greater than k, terminate because no schedule of length at most k exists

for G with respect to r.

(3d) For i ∈ [pj], construct a schedule Zji of length deg
F j
i
(uji) + deg

F j
i
(vji) − τ

j
i for F ji such

that T
Zj
i
(uji , v

j
i) = τ ji .

Before we prove the correctness of this algorithm, we need a small technical lemma that allows us

to easily construct the sets C1, . . . , Cp.

(4.15) Let G be a graph, let c ∈ V (G) be such that degG(c) = 2 and let u, v be the neighbors of

c. Let G′ be obtained from G by non-adjacent cloning of c. If G′ has no cut-vertex, then either

16

min{degG′(u),degG′(v)} ≥ 3, or G′ is a 4-cycle.

Proof. Let c1 6= c be a clone of c. If V (G′) = {u, v, c, c1}, then G′ is a 4-cycle and the claim

holds. So we may assume that there exists x ∈ V (G′) \ {u, v, c, c1}. Because G′ is 2-connected, it

follows that there exist paths P1, P2 from x to c1 in G′ such that V (P1) ∩ V (P2) = {x, c1}. Since

NG′(c1) = {u, v}, it follows that one of P1, P2 contains u and not v, and the other contains v and

not u. This implies that degG′(u) ≥ 3 and degG′(v) ≥ 3. �

This allows us to prove the correctness and the complexity of algorithm Find-Pseudo-Schedule.

(4.16) Let b ≥ 1, let G be a GOLoP(b) graph and let r be a rate function for G. Then, algorithm

Find-Pseudo-Schedule either finds a pseudo-schedule of length at most k for G with respect to

r, or determines that no such pseudo-schedule exists. Its running time is O(|V (G)|).

Proof. It follows from (4.3) that steps (1) and (2) can be done in O(|V (G)|) time. Now, let Bj

a block of G. Let Hj = (Bj ,
⌈
rjk
⌉
). Clearly, Hj can be constructed in O(|V (Bj)|) time because

|E(Bj)| = O(|V (Bj)|), as proved in [2].

Identifying the sets Cj1 , . . . , C
j
pj

of non-adjacent clones can be done as follows. If Bj is a 4-cycle,

then p = 1 and we may take Cj1 to be any two non-adjacent vertices in V (Bj). Otherwise, it follows

from (4.15) that deg(uji),deg(vji) ≥ 3 for all i ∈ [p]. By the definition of GOLoP(b), there are at

most b such vertices and at most
(
b
2

)
= O(1) pairs of such vertices. Thus, we can identify the sets

Cji by constructing the list of all pairs {u, v} of vertices u, v of degree at least three and assign

every vertex of degree two to exactly one of these pairs. Let C(u, v) be the vertices of degree two

that were assigned to the pair {u, v}. Then, {Cj1 , . . . , Cjpj} = {C(u, v) : |C(u, v)| ≥ 2}. Thus, step

(3b) takes O(|V (Bj)|) time.

To construct a pseudo-schedule of length at most k for H, we first need to solve the correspond-

ing integer program (8). As shown in the proof of (4.7), this can be done in O(|V (Bj)|) time.

Constructing Zj from the solution can be trivially done in O(1) time since |MBj′ | = O(1).

Next, we need to solve the integer program in (7). To do so, we view this problem as an open shop

scheduling problem with two machines, in which uji and vji are the two machines, Cji is the set of

jobs, and job c ∈ Cji needs to be processed on machine uji for mp(uji c) time units and on machine

vji for mp(vji c) time units. Minimizing the makespan of this scheduling instance is equivalent to

finding a minimum length schedule for F ji . It was shown in [8] that finding an optimal solution for

this open shop scheduling can be done in linear time, i.e. in O(|V (Cji)|) time. We note here that

preemptions do not result in shorter optimal schedules for the two-machine open shop makespan

problem. Therefore, optimal non-preemptive schedules can be taken intead of optimal preemptive

ones to find a minimum length schedule for F ji and thus an optimal solution to (7). The obvious

advantage of this choice is the reduction in the number of distinct matchings required by the optimal

solution, this number is obviously O(|V (Cji)|). Thus, modifying the solution to obtain a schedule

Zji such that T
Zj
i
(uji , v

j
i) = τ ji and that has length deg

F j
i
(uji) + deg

F j
i
(vji)− τ j takes again O(|Cji |)

time. This proves (4.16). �

Now we prove that, given a pseudo-schedule Z of length at most k, we can assemble a sequence of at

17

most k matchings in G. Furthermore, this sequence requires at most O(|V (G)|) distinct matchings

in G, which permits a succinct encoding of schedule of G that specifies a list of pairs (M, `), with

M being a matching in the G and ` being the number of occurences of M in the schedule.

We begin by giving an informal description of the method. Consider a block-cutpoint tree T of G

rooted at any vertex. We start by ordering the blocks of G, which is equivalent to ordering the

vertices of T , so that for each i ≥ 1 the first i blocks of the order induce a connected subgraph of

G. This can be achieved by, for example, taking any depth-first-search ordering of the vertices in

T . Recall that Z gives a feasible schedule, or equivalently a sequence of matchings, for each block

of G. Each matching of G is then assembled from the block matchings as follows. We start with

an empty matching M of G and then process the blocks according to their previously fixed order

to construct M iteratively. If the cut-vertex connecting the current block with its ‘parent’ block

is an endvertex of an edge already in M , then we try to find a matching in the current block not

saturating the cut-vertex. If such a matching exists, then its edges are added to M . If there is

no edge in M that saturates the cut-vertex, then we take a matching, if any, in the current block

that saturates the cut-vertex and we add its edges to M . The matchings in the blocks are obtained

from the corresponding schedules for the blocks. When all blocks are processed, then we add the

matching M thus assembled to the output sequence of matchings, and simultaneously update the

block schedules corresponding to the block matchings used by M . We then proceed to the next

iteration to find the next matching of G. In (4.17) we prove that this method gives the desired

sequence of k matchings for G.

We are now ready to give a more formal pseudo-code of an algorithm that constructs the desired

sequence of matchings from the pseudo-schedule Z.

Algorithm Recover-Schedule

Input: A GOLoP graph G, the block-decomposition of G, and a pseudo-schedule Z of length

k ≤ |Z|.
Output: A schedule S for G given as a set {(M, `) : M ∈MG, ` ∈ Z+}.

(1) Order the blocks B1, . . . , Bq so that G
[⋃j−1

l=1 V (Bl)
]

is connected for all j ∈ [q]. Set S := ∅.
(2) While there exists j ∈ [q] such that Zj 6= ∅ do the following:

(2a) Set M := ∅.
(2b) For each j ∈ [q] with Zj 6= ∅, do the following:

◦ If j = 1, choose M1 such that (M1, `) ∈ Z1 and set `′ := `.

◦ If j > 1, then let xj be the unique cut-vertex of G
[⋃j−1

l=1 V (Bl)
]

that lies in V (Bj).

If M saturates xj , then choose any M j such that (M j , `) ∈ Zj does not saturate xj ,

if any. If M does not saturate xj , then choose M j that saturates xj , if any. If no

M j saturating xj exists, then take any M j . If no such M j exists, go to step (2b) and

consider the next value of j, otherwise set `′ := min{`′, `}.
◦ For all i ∈ [pj] such that M j ∩ {ujiv

j
i , u

j
ia
j
i , v

j
i a
j
i} 6= ∅, do the following:

◦ If ujiv
j
i ∈ M j , then choose (M j

i , `) ∈ Z
j
i such that M j

i covers both uji and vji , and

set `′ := min{`′, `}.
◦ If ujiai ∈ M j , then choose (M j

i , `) ∈ Z
j
i such that M j

i covers uji but not vji , and set

18

`′ := min{`′, `}.
◦ If vji ai ∈ M j , then choose (M j

i , `) ∈ Z
j
i such that M j

i covers vji but not uji , and set

`′ := min{`′, `}.
◦ Set M j :=

(
M j \ {ujiv

j
i , u

j
ia
j
i , v

j
i a
j
i}
)
∪M j

i .

◦ Let M := M ∪M j .

(2c) For each M j chosen in step (2b) replace (M j , `) by (M j , `−`′) in Zj and if `−`′ = 0, then

delete (M j , `− `′) from Zj . Similarly, for each M j
i chosen in step (2b) replace (M j

i , `) by

(M j
i , `− `′) in Zji , and delete (M j

i , `
′ − `) from Zji if `− `′ = 0. Let S := S ∪ {(M, `′)}.

Notice that since the number of distinct matchings in Zj is constant and the number of matchings

Zji is O(|V (F ji)|) it follows that each iteration of the main loop can be done in O(|V (G)|) time.

Thus, by (4.16) and by the fact that each iteration ‘eliminates’ at least one matching in a block of

G, the overall complexity of algorithm Recover-Schedule is O(|V (G)|2).

(4.17) Let b ≥ 1 and let G be a GOLoP(b) with a rate function r. There exists a O(|V (G)|2)-time

algorithm that finds a schedule S for G. Moreover, the number of pairwise different matchings in

S is O(|V (G)|).

Proof. The schedule S is a result of the execution of Find-Pseudo-Schedule for G and r (which

produces a pseudo-schedule Z) and the execution of Recover-Schedule for Z, G and the block

decomposition.

Now, observe that it follows from the ordering of the blocks B1, . . . , Bq that for each j > 1, there

exists a unique cut-vertex xj of
⋃j−1
l=1 V (Bl) that lies in V (Bj). To prove the correctness of this

algorithm, it suffices to show that after each iteration we have |Z| ≤ k − t, where t ∈ [k] is the

sum of the multiplicities of the matchings added to S prior to and in this iteration. We prove this

by induction on the number of iterations. The statement is clearly true at the beginning of the

first iteration. Now let Z̄ be the pseudo-schedule and let S be the schedule at the beginning of an

iteration. Furthermore, let t =
∑

(M,`)∈S `) and let Z be the pseudo- schedule at the end of the

iteration. We denote by `′ the multiplicity of the matching choosen in the iteration.

First, suppose for a contradiction that |Zj | ≥ k − t + 1 for some j ∈ [q]. Since by induction

|Z̄j | ≤ k − t + `′, it follows that |Zj | = |Z̄j |. Hence no matching M j was chosen in this iteration.

Thus, j > 1. This means that for some j′ < j, M j′ saturates xj , and every matching in Z̄j saturates

xj , because Z̄j 6= ∅. But this implies that c(Z̄, xj) ≥ `′+ |Z̄j | > k− t+ `′, contrary to the inductive

hypothesis. Thus, |Zj | ≤ k − t for all j ∈ [q].

Second, suppose for a contradiction that c(Z, x) ≥ k − t + 1 for some cut-vertex x of G. By

induction, we have c(Z̄, x) ≤ k − t + `′. Therefore, c(Z, x) = c(Z̄, x). This implies that none of

the matchings M j chosen in the iteration saturates x. Therefore, all matchings M that saturate x

are already included in S and hence c(Z, x) = 0. This however contradics c(Z̄, x) ≥ k − t+ 1 > 0.

Thus, c(Z̄, x) ≤ k− t for every cut-vertex x of G. This proves that |Z| ≤ k− t. This completes the

proof of (4.17). �

19

5 An upper bound on the schedule length

In this section we are interested in finding, for a given graphG and rates r for which K-Match(G, r, k)

is affirmative for some k, an upper bound for the length of a shortest schedule. To get a handle on

this bound, we will focus on the following property. We say that a graph G has the lcd-property

(with constant C) if for every rate function r, it holds that if K-Match(G, r, k) has an affirmative

answer for some k, then K-Match(G, r, Cd) also has an affirmative answer, where d is the least

common denominator for the rate function r. Notice that, in this definition, the value of C only

depends on the graph G and not on the rate function r. Notice also that a graph having the

lcd-property with constant C does not necessarily have the lcd-property with constant C + 1. We

do, however, have the following property.

Property 5.1. Let G be a graph having the lcd-property with constant C. Then G also has the

lcd-property with constant tC for any positive integer t.

We first show that the lcd-property is equivalent to a property that relates the fractional chromatic

index and the chromatic index of multigraphs associated with G.

(5.2) Let G be a graph and let C ≥ 1 be an integer. The following two statements are equivalent:

(i) G has the lcd-property with constant C;

(ii) dχ′f (G,mp)e = d 1Cχ
′(G,C ·mp)e for every function mp.

Proof. (i) =⇒ (ii): Let (G,mp) be given. Since χ′(H) ≥ χ′f (H) for every multigraph H, we have⌈
1

C
χ′(G,C ·mp)

⌉
≥
⌈

1

C
χ′f (G,C ·mp)

⌉
=
⌈
χ′f (G,mp)

⌉
.

To prove the inequality in the other direction, let p = dχ′f (G,mp)e. Set r = mp/p and d =

p/ gcd(p,mp). Then, d is the least common denominator of r and we may write p = td for some

integer t ≥ 1. We have

χ′f (G, r) = χ′f

(
G,

mp

p

)
=
χ′f (G,mp)

p
≤ 1.

Thus, by (2.2), it follows that K-Match(G, r, k) has an affirmative answer for some k. By statement

(i), K-Match(G, r, Cd) has an affirmative answer. This implies that

1

C
χ′(G,C ·mp) ≤ t

C
χ′
(
G,

C ·mp

t

)
=

t

C
χ′(G,Cdr) ≤ tCd

C
= p.

Since p is an integer, it follows that in fact d 1Cχ
′(G,C ·mp)e ≤ p. This proves that (ii) holds.

(ii) =⇒ (i): Let r be such that K-Match(G, r, k) has an affirmative answer for some k. It

follows from (2.2) that χ′f (G, r) ≤ 1. Let d be the least common denominator for r. It follows that

χ′f (G, d · r) ≤ d. Therefore, by (ii),⌈
1

C
χ′(G,Cd · r)

⌉
=
⌈
χ′f (G, d · r)

⌉
≤ d,

which implies that 1
Cχ
′(G,Cd · r) ≤ d, as required. �

20

In Section 5.1, we will prove that every OLoP graph has the lcd-property with constant C = 1.

However, the following example shows that not every graph has the lcd-property with constant 1.

Example. Let G be the Petersen graph (see Figure 2(a)) and let r(e) = 1
3 for each e ∈ E(G).

The answer to K-Match(G, r, k) is no for each k ≤ 3, because (G, dk3e) is isomorphic to G and

(a) (b)

2

2

3

5

1
4

5

3
1

4

6

2

6 1

5

6

4
66

3

4

3

2

11
5

5
4
3

2

Figure 2: (a) the Petersen graph G; (b) an edge 6-coloring of G2

χ′(G) = 4. Note that for each k = 4, 5, 6 the multigraph (G, dk3e) is isomorphic to G2, i.e., the graph

obtained by replacing each edge in G by two parallel edges. It is enough to argue that χ′(G2) ≥ 6.

This, however, follows from the fact that each matching in the Petersen graph consists of at most

5 edges, and consequently, E(G2) can not be partitioned into at most 5 matchings, each of size at

most 5, because |E(G2)| = 30. Thus, the answer to K-Match(G, r, k) is no for each k ≤ 5.

Figure 2(b) gives a 6-edge-coloring of G2, which implies that the answer to K-Match(G, r, 2d) is

yes, where d = 3 is the least common denominator of the rates. This shows that for the Petersen

graph, C ≥ 2.

With the Petersen graph in mind, the following question arises: is it true that every graph has the

lcd-property for some, graph but not rate function dependent, constant C? And if so, what is the

smallest value of C? In Section 5.2, we will prove that the former question always has an affirmative

answer, and that, for fixed b, every GOLoP(b) graph satisfies the lcd-property with some constant

that depends only on b. Finally, with (5.2) in mind, we point out that the following conjecture of

Seymour implies that every graph has the lcd-property with constant C ≤ 2.

Conjecture 5.3. (Seymour [21]) For every multigraph H it holds dχ′f (H)e = d12χ
′(H2)e, where H2

is the multigraph obtained from H by replacing each edge with two parallel edges.

This conjecture follows easily from the work of Plantholt and Tipnis [20] for graphs on at most 10

vertices which we now show.

Theorem 5.4. Let H = (G,mp) be a multigraph such that |V (G)| ≤ 10. Then,
⌈
1
2χ
′(G, 2mp)

⌉
=⌈

χ′f (G,mp)
⌉

.

21

Proof. We first claim that is suffices to prove that χ′(H) =
⌈
χ′f (H)

⌉
for any H = (G,mp) such

that |V (G)| ≤ 10 and mp(e) is even for all e ∈ E(G). Indeed, if χ′(G, 2mp) =
⌈
χ′f (G, 2mp)

⌉
, then⌈

1

2
χ′(G, 2mp)

⌉
=

⌈
1

2

⌈
χ′f (G, 2mp)

⌉⌉
=

⌈
1

2
χ′f (G, 2mp)

⌉
=
⌈
χ′f (G,mp)

⌉
,

as required. Here, we use the fact that ddxe /2e = dx/2e for all x ∈ R.

Thus, let H = (G,mp) be a multigraph such that |V (G)| ≤ 10 and mp(e) is even for all e ∈
E(G). Suppose for a contradiction that χ′(H) 6=

⌈
χ′f (H)

⌉
. Thus, by Theorem 1.1 χ′(H) 6=

max{∆(H), dt(H)e}. Then, it follows from Theorem 2 of [20] that there exists a multigraph H ′ =

(G′,mp′) and a vertex v ∈ V (G′) such that (i) G′ is isomorphic to the Petersen graph, (ii) H ′

is regular, (iii) there exists a 5-cycle C in H ′ that has an odd number of edges, (iv) H is a

submultigraph of H ′, and (v) H ′ − v is a submultigraph of H. Conditions (iv) and (v) imply

that mp(e) = mp′(e) for all e ∈ E(G) \ δ(v). Now let u ∈ V (G) \ N(v) (u exists because G′ is

isomorphic to the Petersen graph). Since mp(e) is even for all e ∈ δ(u) and H ′ is regular, it follows

that degH′(u) is even. Next, consider the 5-cycle C. Clearly, since mp(e) = mp′(e) is even for all

e ∈ E(G) \ δ(v), C contains an edge vx such that mp′(vx) is odd. But because mp′(e) is even for

all e ∈ δ(x) \ {vx}, this implies that degH′(x) is odd, a contradiction. This proves the theorem. �

By this theorem all graphs with at most 10 vertices have the lcd-property with constant C either

1 or 2.

5.1 OLoP graphs

In this section, we prove that every OLoP graph has the lcd-property with C = 1. Our approach

is to prove (ii) in (5.2) with C = 1 for any OLoP graph G. That is we need to prove, the following

theorem:

Theorem 5.5. For every OLoP multigraph H = (G,mp), it holds that χ′(G,mp) =
⌈
χ′f (G,mp)

⌉
.

Because of (4.5) and (4.9), it suffices to consider blocks of OLoP graphs. Indeed, suppose that

Theorem 5.5 holds for blocks and let x be a cut-vertex in an OLoP multigraph H. Let K1, . . . ,Kp

be the connected components of H − x. Then,

χ′(H) = max

[
deg(x), max

i=1,...,p

{
χ′(H[V (Ki) ∪ {x}])

}]
= max

[
deg(x), max

i=1,...,p

⌈
χ′f (H[V (Ki) ∪ {x}])

⌉]
=
⌈
χ′f (H)

⌉
.

Thus, we concentrate on the blocks of OLoP graphs. We show that for a multigraph H = (G,mp)

such that G is a block of an OLoP graph, it holds that χ′(H) =
⌈
χ′f (H)

⌉
. The proof relies on

the observation that all blocks of an OLoP graph, with the exception of few small blocks with

|V (H)| ≤ 5, are either bipartite or nearly bipartite or can be easily ‘reduced’ to a nearly bipartite

22

graph. We begin by briefly reviewing the main results for nearly bipartite multigraphs which are

of interest to us.

A multigraph H = (G,mp) is called nearly bipartite if there exists a vertex x ∈ V (G) such that

G− x is bipartite.

Eggan and Plantholt [6] proved that χ′(H) = max{∆(H), dt(H)e} for every nearly bipartite multi-

graph H. Thus, by Theorem 1.1 we readily obtain the following.

Theorem 5.6. (Eggan and Plantholt [6]) If H is a nearly bipartite multigraph, then χ′(H) =⌈
χ′f (H)

⌉
.

Moreover, the following result was shown in [19] (see also [20]).

Theorem 5.7. (Plantholt [19]) If H is a multigraph with |V (H)| ≤ 8, then χ′(H) =
⌈
χ′f (H)

⌉
.

In the following two results, (5.8) and (5.9), we will use these two theorems to prove Theorem 5.5.

We start with the easier case:

(5.8) Every multigraph H of the B2 type satisfies χ′(H) =
⌈
χf (H)

⌉
.

Proof. Let H = (G,mp) be a multigraph of the B2 type. First, if G is isomorphic to K2, K3 or K4,

then the claim holds by Theorem 5.7. Next, if G is isomorphic to K2,t (t ≥ 2}, then H is bipartite

and the result follows by Kőnig’s theorem [15]. Finally, let G be isomorphic to K+
2,t (t ≥ 2}. Let

u, v be the two vertices on the side of cardinality 2. Then H − u is isomorphic to K1,t. Hence H is

nearly bipartite and the result follows from Theorem 5.6. �

This leaves blocks of the B1 type:

(5.9) Every multigraph H of the B1 type satisfies χ′(H) =
⌈
χ′f (H)

⌉
.

Proof. First, consider a multigraph H of the B1 type with |V (H)| ≥ 6. Let us start with the case

where H is constructed from a 7-cycle.

(i) If H contains a cycle of length seven, then H is nearly bipartite.

Consider H and let c1-c2- · · · -c7-c1 be the vertices of a cycle of length seven in H. From the

definition of graphs of the B1 type, it follows that we may assume that all pairs of vertices

ci, cj with |i− j| ≥ 2 are non-adjacent except possibly {c1, c4}, {c1, c5} and {c4, c7}. If both

c1 and c4 have clones, then H is a multi-cycle of length seven, and thus the result holds (for

instance H − c2 is bipartite). From the symmetry, we may assume now that no vertex is a

clone of c1. We claim that H − c1 is bipartite. Let C(ci) be the set of clones of vertex ci, for

i = 2, . . . , 7 and let C[ci] = C(ci) ∪ {ci}. Notice that some of the sets C(ci) are necessarily

empty, since only vertices of degree 2 may admit clones. Then the bipartition V1, V2 of H−c1
is obtained as follows: V1 = {C[c3], C[c5], C[c7]} and V2 = {C[c2], C[c4], C[c6]}. �

By (i) and Theorem 5.6, we may assume that H is not nearly bipartite and is constructed from a

5-cycle, say c1-c2- · · · -c5-c1. If two vertices of the cycle, say c1 and c3, admit clones then H − c2

23

(a)
...

a

b

(b)
...

a

(c)
...

b - a

c
1

c
2

c
4

c
3

c
5

c
1

c
2

c
4

c
3

c
5

c
1

c
2

c
4

c
3

c
5

Figure 3: (a) The block H; (b) H ′ when a ≥ b; (c) H ′ when a < b

is bipartite and thus H is nearly bipartite, a contradiction. Thus, since |V (H)| ≥ 6, exactly one

vertex of the cycle admits clones. We may assume without loss of generality that c1 admits clones

in H (see Figure 3(a)). Furthermore, the pairs {c2, c5}, {c2, c4}, and {c3, c5} are adjacent, because

otherwise H would be nearly bipartite. Notice that since c1 admits clones, the pairs {c1, c3} and

{c1, c4} are non-adjacent. Let a = mp(c2c5) and b = mp(c3c4). We distinguish two cases:

(i) a ≥ b: Consider the graph H ′ obtained from H by deleting all edges between c3 and c4 (see

Figure 3(b)).

(ii) a < b: Consider the graph H ′ obtained from H by deleting all edges between c2 and c5 and

deleting a edges between c3 and c4 (see Figure 3(c)).

We obtain the following result.

(ii) H ′ is nearly bipartite and

χ′(H ′) =

{
χ′(H) if a ≥ b,
χ′(H)− a if a < b,

and χ′f (H ′) =

{
χ′f (H) if a ≥ b,
χ′f (H)− a if a < b.

Suppose that a ≥ b. Clearly χ′(H ′) ≤ χ′(H). Consider now an optimal edge-coloring of H ′.

Notice that the colors used to color the edges (c2c5)
1, . . . , (c2c5)

a are not used to color any

other edges in H ′. Thus we obtain an edge-coloring of H from the edge-coloring of H ′ by

using the colors of the edges (c2c5)
1, . . . , (c2c5)

a to color the edges (c3c4)
1, . . . , (c3c4)

b. This

is possible since a ≥ b. Thus we obtain a feasible edge-coloring of H using χ′(H ′) colors.

Hence χ′(H ′) = χ′(H). Clearly H ′ is nearly bipartite since, for instance, H ′− c2 is bipartite.

Now suppose that a < b. Consider an optimal edge-coloring of H. By re-coloring some of the

edges (c3c4)
1, . . . , (c3c4)

b, if necessary, we may assume that the edges (c2c5)
1, . . . , (c2c5)

a are

colored with colors that are also used to color the first a edges of (c3c4)
1, . . . , (c3c4)

b. These

a colors are not used for any other edges in the graph. Now in H ′, we may assume without

loss of generality that exactly those a edges of (c3c4)
1, . . . , (c3c4)

b have been deleted. Thus

we obtain a feasible edge-coloring of H ′ with χ′(H)−a colors. We claim that this coloring is

optimal. Indeed, if χ′(H ′) < χ′(H)− a, then we would obtain a feasible edge-coloring of H

with strictly less than χ′(H) colors by coloring the edges between vertices c2 and c5 as well

24

as the added edges between vertices c3 and c4 with a new colors, a contradiction. Clearly

H ′ is nearly bipartite since, for instance, H ′ − c3 is bipartite.

The proof for the fractional chromatic index of H is similar and thus it is omitted. This

proves (ii). �

Since both a and b in the definition of H ′ are integers, (ii) implies that χ′(H) =
⌈
χ′f (H)

⌉
, proving

the lemma for |V (H)| ≥ 6. Finally, the lemma holds for |V (H)| = 5 by Theorem 5.7. This proves

the lemma. �

We just showed that for a multigraph H = (G,mp) such that G is a block of an OLoP graph, it

holds that dχ′f (H)e = χ′(H). This allows us to finish up the proof of Theorem 5.5.

Proof of Theorem 5.5. Let H = (G,mp) be an OLoP multigraph. By (4.5), χ′(G,mp)

equals either the maximum cut-vertex degree or the maximum block chromatic index. The same

holds for χ′f (G,mp). The maximum cut-vertex degree is integral, and by (5.8) and (5.9) we have

dχ′f (B)e = χ′(B) for each block of H. This proves that dχ′f (H)e = χ′(H) are required. �

5.2 GOLoP graphs

In this section, we prove that, for any fixed integer b ≥ 1, every GOLoP(b) has the lcd-property

with constant C, where C only depends on b. The main ingredient for this result is the following

lemma.

Lemma 5.10. Let G be a graph and let (G′,W) be the collapsed graph associated with G. Then G

has the lcd-property with constant C, where C is a constant that only depends on G′ and W .

Proof. Let G, G′, and W be as in the statement of the lemma. Let p = |W |. Consider the linear

program

min
{
eTx

∣∣ Ax = b;x ≥ 0
}

(10)

where e is an all-ones vector, A is the constraints matrix of the linear program (9), for G, G′,

and W , in which the inequality constraints have been replaced by equality constraints with slack

variables. We assume that these inequalities constitute the last p rows of A. Finally, the right

hand side vector b is arbitrary. It is well-known that every bounded linear program has an optimal

solution that corresponds to a basic feasible solution (see, e.g., [1]). Let

C(G′,W) = lcm
(
det(B)

∣∣ B is a basis matrix for (10)
)
.

Notice that C(G′,W) exists because there are only finitely many basis matrices for (10). Also

observe that C(G′,W) only depends on A, and that C(G′,W) is independent of the vector b.

Now let r be a given rate function for G such that χ′f (G, r) ≤ 1 and let d be its least common

denominator. We will show that χ′(G,C(G′,W)dr) ≤ C(G′,W)d. Following the proof of (4.13),

we have that

χ′f (G, r) = min

{
eTx

∣∣∣∣ Ax =

(
r′

t

)
; x ≥ 0

}
, (11)

25

where r′ corresponds to the right-hand-side values in (9) and t =
(
T ∗∗1 . . . T ∗∗p

)T
where T ∗∗i =

ri(ui) + ri(vi) − χ′f (Hi, ri) and Hi and ri are as in the proof of (4.13). It follows from the choice

of d and the definition of r′ that dr′ is a vector of integers. For i ∈ [p], it follows from (4.11) that

χ′f (Hi, ri), and hence dT ∗∗i , is an integer. Therefore, by scaling the right-hand-side vector of (11),

we have

dχ′f (G, r) = min

{
eTx

∣∣∣∣ Ax =

(
dr′

dt

)
; x ≥ 0

}
, (12)

which is a linear program in which all entries of both the constraint matrix and the right-hand-side

vector are integers. Let B∗ be an optimal basis matrix for (12). By Cramer’s rule, we have

xi =
det(B∗i)

det(B∗)
,

where B∗i is constructed from B∗ by replacing the i’th column by the vector (dr′, dt). Since (dr′, dt)

is a vector of integers and the entries of A are all integers, it follows that both the numerator and

the denominator in the expression above are integers. Therefore, since C(G′,W) is a multiple of

det(B∗), C(G′,W)xi is an integer. Hence, y := C(G′,W)x is an optimal solution to the integer

program

C(G′,W)dχ′f (G, r) = min

{
eTy

∣∣∣∣ Ay =

(
C(G′,W)dr′

C(G′,W)dt

)
; y ≥ 0; y is an integer

}
, (13)

and the corresponding optimal objective value is C(G′,W)dχ′f (G, r). Now observe that (13) is ex-

actly the integer program (8) for χ′(G,C(G′,W)dr) in the proof of (4.7). Thus, χ′(G,C(G′,W)dr) =

C(G′,W)dχ′f (G, r) ≤ C(G′,W)d. This proves the lemma. �

The following theorem uses Lemma 5.10 to establish the lcd-property for all GOLoP(b) graphs with

fixed b.

Theorem 5.11. There exists a function C(b) such that every GOLoP(b) graph has the lcd-property

with constant at most C(b).

Proof. Let C(b) = lcm(C(G′, A)), where C(G′, A) is the constant C from Lemma 5.10 and where

the least common denominator is taken over all graphs G′ on at most b vertices and A is a stable

set of vertices of degree two in G′. Now the result follows from Lemma 5.10, (4.5), the fact that

there are only finitely many graphs on b vertices and the fact that for every fixed graph G′, there

are only finitely many choices of A. �

5.3 Minimizing the schedule length

After having found a linear (resp. a quadratic) algorithm for the problem K-Match(G, r, k) (resp.

Find-Match(G, r, k)), a natural next problem to take on is Min-Match(G, r). That is the prob-

lem of finding the smallest k such that the answer to K-Match(G, r, k) is affirmative. While trying

to solve this problem, we run into two difficulties. The first difficulty lies in the fact that the smallest

26

value of k might be quite large. The second difficulty follows from the fact that K-Match(G, r, k)

having an affirmative answer does not necessarily imply that K-Match(G, r, k′) for k′ > k has an

affirmative answer. Thus, a straightforward binary search does not work. It seems that the best

we can do is a full search of all values of k up to the upper bound that is given by Theorem 5.11.

This leads to the following result:

(5.12) Let b ≥ 1 be a constant integer. Let G be a GOLoP(b) graph and let r be a rate function

for G. Then Min-Match(G, r) can be solved in O(|V (G)|d) time, where d is the least common

denominator of the rates.

Proof. Let C = C(b) as in Theorem 5.11. Notice that C is a constant. For each block B of G, let

K(B) be the set of values k = 1, . . . , Cd such that there exists a schedule of length k. These sets

can be constructed in O(|V (G)|d) total running time. Next, choose the smallest value k such that

k ∈ K(B) for all blocks B, which also takes O(|V (G)|d) time. �

Although the algorithm above is efficient in the theoretical sense, we do note that the constant C

given by Theorem 5.11 is quite large. However, Conjecture 5.3 suggests that actual constant is as

small as 2. Moreover, in the case of OLoP graphs, Theorem 5.5 allows us to use C = 1.

6 Conclusions

In this paper, we studied the following problem: given an undirected graph G = (V,E), an integer

k ≥ 1 and an arrival rate 0 < r(e) ≤ 1 for each of its edges e ∈ E, does there exist a sequence of k

matchings such that each edge e belongs to at least kr(e) of these matchings? We showed that this

problem is NP-complete in the strong sense for general graphs. This result, as well as potential

applications in single-hop traffic models of wireless networks with primary interference constraints

motivated us to study the problem for a special class of graphs: the GOLoP(b) graphs, a general-

ization of the so-called OLoP graphs. We presented a linear-time algorithm for deciding whether

the abovementioned sequence of matchings exists and a quadratic-time algorithm for finding it for

any GOLoP(b) graph with a constant parameter b.

For the problem of finding the smallest value of k such that a sequence of k matchings satisfying

the arrival rate constraints exists, we proved that the least common denominator d of the arrival

rates is an upper bound for the smallest k for OLoP graphs. At the same time we showed that no

schedule shorter than 2d may exist for the Petersen graphs. We also conjectured that the upper

bound on the length of the shortest schedule is actually 2d for general graphs, and we proved this

conjecture for general graphs with at most 10 vertices. Finally, we presented a pseudopolynomial

time algorithm for the smallest k for GOLoP(b) graphs with constant b. The question of the

existence of a polynomial time algorithm for finding the smallest k remains open for OLoP as well

as for GOLoP(b) graphs.

While GOLoP(b) graphs are important due to their natural connection to OLoP graphs, it would

be interesting to derive the complexity results for more general classes of graphs. This seems to be

a promising direction for further research.

27

Finally, since the potential applications of the results presented in this paper lie in the area of

wireless networks where the centralized algorithms are difficult or impossible to implement, an

interesting research direction is the investigation of the combinatorial problems considered here in

a distributed setting.

Acknowledgments

This research has been supported by the Natural Sciences and Engineering Research Council of

Canada (NSERC) Grant OPG0105675. Moreover, Dariusz Dereniowski has been supported by the

Polish Ministry of Science and Higher Education (MNiSW) grant N N516 196437.

References

[1] D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization. Athena Scientific

Belmout, MA, 1997.

[2] B. Birand, M. Chudnovsky, B. Ries, P. Seymour, G. Zussman, and Y. Zwols. Analyzing the

performance of greedy maximal scheduling via local pooling and graph theory. In INFOCOM,

2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[3] A. Brzezinski, G. Zussman, and E. Modiano. Enabling distributed throughput maximization

in wireless mesh networks - a partitioning approach. In Proc. ACM MOBICOM’06, Sept. 2006.

[4] A. Dimakis and J. Walrand. Sufficient conditions for stability of longest queue first scheduling:

second order properties using fluid limits. Adv. Appl. Probab., 38(2):505–521, June 2006.

[5] J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of Research of

the National Bureau of Standards, 69(1-2):125–130, 1965.

[6] L. Eggan and M. Plantholt. The chromatic index of nearly bipartite multigraphs. Journal of

Combinatorial Theory, Series B, 40(1):71–80, 1986.

[7] F. Eisenbrand. Fast integer programming in fixed dimension. In G. Di Battista and U. Zwick,

editors, Proceedings of the 11th Annual European Symposium on Algorithms, volume 2832 of

LNCS, pages 196–207. Springer, 2003.

[8] T. Gonzalez and S. Sahni. Open shop scheduling to minimize finish time. Journal of the ACM

(JACM), 23(4):665–679, 1976.

[9] J. L. Gross and J. Yellen. Graph theory and its applications. CRC press, 2006.

[10] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in

combinatorial optimization. Combinatorica, 1:169–197, 1981.

[11] B. Hajek and G. Sasaki. Link scheduling in polynomial time. IEEE Transactions on Informa-

tion Theory, 34:910–917, 1988.

28

[12] J.-H. Hoepman. Simple distributed weighted matchings. eprint cs.DC/0410047, Oct. 2004.

[13] I. Holyer. The NP-completeness of edge-colouring. Siam J. Comput, 10(4):718–720, 1981.

[14] C. Joo, X. Lin, and N. B. Shroff. Performance limits of greedy maximal matching in multi-hop

wireless networks. In Proc. IEEE CDC’07, Dec. 2007.

[15] D. Kőnig. Über graphen und ihre anwendung auf determinantentheorie und mengenlehre.

Mathematische Annalen, 77:453–465, 1916. 10.1007/BF01456961.

[16] A. N. Letchford, G. Reinelt, and D. O. Theis. A faster exact separation algorithm for blossom

inequalities. Integer programming and combinatorial optimization, pages 19–52, 2004.

[17] X. Lin and N. B. Shroff. The impact of imperfect scheduling on cross-layer rate control in

wireless networks. IEEE/ACM Trans. Netw., 14(2):302–315, Apr. 2006.

[18] M. W. Padberg and M. R. Rao. Odd minimum cut-sets and b-matchings. Mathematics of

Operations Research, 7(1):67–80, 1982.

[19] M.J. Plantholt. An order-based upper bound on the chromatic index of a multigraph. J.

Combin. Inform. System Sci., 16:271–280, 1991.

[20] M.J Plantholt and S.K. Tipnis. The chromatic index of multigraphs of order at most 10.

Discrete Mathematics, 177:185–193, 1997.

[21] P. D. Seymour. On multi-colourings of cubic graphs, and conjectures of fulkerson and tutte.

In Proc. London Math. Soc.(3), volume 38, pages 423–460. Citeseer, 1979.

[22] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems and

scheduling policies for maximum throughput in multihop radio networks. IEEE Trans. Au-

tomat. Contr., 37(12):1936–1948, Dec. 1992.

[23] D. B. West et al. Introduction to graph theory. Prentice Hall Upper Saddle River, NJ, 2001.

29

