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Abstract

Erdős and Hajnal [4] conjectured that, for any graph H, every graph on n vertices that does
not have H as an induced subgraph contains a clique or a stable set of size nε(H) for some
ε(H) > 0. The conjecture is known to be true for graphs H with |V (H)| ≤ 4. One of the two
remaining open cases on five vertices is the case where H is a four-edge path, the other case
being a cycle of length five. In this paper we prove that every graph on n vertices that does not
contain a four-edge-path or the complement of a five-edge-path as an induced subgraph contains
either a clique or a stable set of size at least n1/6.

1 Introduction

All graphs in this paper are finite and simple. A clique is a set of pairwise adjacent vertices and
a stable set is a set of pairwise non-adjacent vertices. For a set of vertices X, we denote by G|X
the subgraph of G induced by X. Let Forb(X1, X2, . . . , Xk) be the set of all graphs G such that
for all i ∈ {1, 2, . . . , k}, no induced subgraph of G is isomorphic to Xi. For a vertex v ∈ V (G), we
let N(v) denote the set of vertices adjacent to v and M(v) the subset of vertices of V (G)\{v} that
are non-adjacent to v. We say that two sets X ⊆ V (G) and Y ⊆ V (G) are complete to each other
if every x ∈ X and y ∈ Y are adjacent. We say that X and Y are anticomplete to each other if
every x ∈ X and y ∈ Y are non-adjacent. We denote by Gc the graph with vertex set V (G) and
edge set {{u, v} ∈ V (G)2

∣∣ u 6= v, uv 6∈ E(G)}. We call Gc the complement of G.

We say that a graph H has the Erdős-Hajnal property if there exists ε(H) > 0 such that every
graph on n vertices that does not have H as an induced subgraph contains either a clique or a
stable set of size at least nε(H). Clearly, if H has the property, then so does Hc. Erdős and Hajnal
[4] conjectured that all graphs have the property. It is known to be true for every graph H with
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|V (H)| ≤ 4. In [1], it was shown that if two graphs H1 and H2 have the Erdős-Hajnal property,
then so does the graph constructed from H1 by replacing a vertex x ∈ V (H1) by H2 and making
H2 complete to the neighbors of x in H1 and anticomplete to the non-neighbors of x in H1 (this
operation is known as the substitution operation). Moreover, it was shown in [3] that the triangle
with two disjoint pendant edges (this graph is known as the bull) has the property. This leaves
the four-edge-path P4 and the cycle C5 of length five as the remaining open cases for graphs on at
most 5 vertices. This paper deals with the case where H is a four-edge path, where, in addition,
we exclude the complement of a five-edge path. To be precise, we will prove that

Theorem 1.1. Every graph G ∈ Forb(P4, P
c
5 ) ∪ Forb(P c4 , P5) contains a clique or a stable set of

size at least |V (G)|1/6.

For a graph G, let ω(G) denote the size of the largest clique in G and let χ(G) denote the chromatic
number of G. G is called perfect if χ(G′) = ω(G′) for every induced subgraph G′ of G. It was
shown in [2] that a graph G is perfect if and only if it does not contain an odd cycle of length at
least five or the complement of an odd cycle of length at least five as an induced subgraph.

We say that a function g : V (G)→ R+ is a covering function for G if
∑

p∈V (P ) g(p) ≤ 1 for every
perfect induced subgraph P ofG. For β ≥ 1, we say that a graphG is β-narrow if

∑
v∈V (G) g

β(v) ≤ 1
for every covering function g. Notice that since a graph is perfect if and only if its complement is
perfect, it follows that a graph is β-narrow if and only if its complement is β-narrow. It was shown
in [3] that bull-free graphs are 2-narrow. We will take a similar approach and prove that

Theorem 1.2. All graphs in Forb(P c4 , P5) are 3-narrow.

This result suffices for proving Theorem 1.1, because of the following result:

(1.3) Let G be a β-narrow graph. Then G has a clique or stable set of size at least |V (G)|1/2β.

Proof. Let P be the set of all perfect induced subgraphs of G. Let K = maxP∈P |V (P )|. Consider
the function g : V (G) → R

+ with g(v) = 1/K for all v ∈ V (G). Clearly,
∑

v∈V (P ) g(v) ≤ 1 for all
P ∈ P. Therefore, since G is β-narrow, it follows that g satisfies

1 ≥
∑

v∈V (G)

g(v)β =
|V (G)|
Kβ

.

Equivalently, we have K ≥ |V (G)|
1
β . Thus, G has a perfect induced subgraph H with |V (H)| ≥

|V (G)|
1
β . Since H is a perfect graph, H satisfies |V (H)| ≤ χ(H)α(H) = ω(H)α(H) and hence

max(ω(H), α(H)) ≥
√
|V (H)| ≥ |V (G)|1/2β. Therefore, H has a clique or stable set of size at

least |V (G)|1/2β. Since H is an induced subgraph of G, G has a clique or stable set of size at least
|V (G)|1/2β. This proves (1.3). �

Notice that the proof of (1.3) also shows that a graph G is 1-narrow if and only if G is perfect.
Jacob Fox [5] proved that the ‘converse’ of (1.3) is also true:

2



Theorem. Let H be a graph that has the Erdős-Hajnal property. Then, every graph in Forb(H) is
β(H)-narrow for some β(H) ≥ 1.

This implies that the Erdős-Hajnal conjecture is equivalent to the following conjecture:

Conjecture. For every graph H, there exists β(H) ≥ 1 such that every G ∈ Forb(H) is β(H)-
narrow.

This paper is organized as follows. In Section 2, we describe tools that we will use in the rest of
the paper. Section 3 deals with graphs in Forb(P c4 , P5) for which we additionally require that they
have no induced copy of C6, the cycle of length six. Finally, in Section 4 we abandon this additional
requirement and finish the proof of Theorem 1.1.

2 Decompositions

We start with a number of graph decompositions and their relationship to the narrowness of graphs.

Lemma 2.1. Let G be a graph and let β ≥ 1. Suppose that for every v ∈ V (G), either

(i) G|N(v) is β-narrow and G|M(v) is (β + 1)-narrow, or

(ii) G|M(v) is β-narrow and G|N(v) is (β + 1)-narrow.

Then G is (β + 1)-narrow.

Proof. Let g be a covering function for G. Choose u ∈ V (G) with g(u) maximal. We may assume
that g(u) < 1, because every 2-vertex induced subgraph of G is perfect. Let GM = G|M(u) and
GN = G|N(u). Since β-narrowness is invariant under taking complements, we may, possibly by
passing to the complement, assume that GM is (β + 1)-narrow and GN is β-narrow.

Define fM : V (GM )→ R+ by fM (v) = g(v)/(1−g(u)). Let P be a perfect induced subgraph of GM .
Since G|(V (P ) ∪ {u}) is perfect, it follows that

∑
v∈V (P ) fM (v) ≤ 1. Since GM is (β + 1)-narrow,

fM satisfies
∑

v∈M fβ+1
M (v) ≤ 1 and therefore∑

v∈M
gβ+1(v) ≤ (1− g(u))β+1.

By repeating the same argument for GN , since GN is β-narrow, it follows that∑
v∈N

gβ(v) ≤ (1− g(u))β.

Moreover, we have, by the choice of u,∑
v∈N

gβ+1(v) ≤ g(u)
∑
v∈N

gβ(v) ≤ g(u)(1− g(u))β.
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Hence, ∑
v∈V (G)

gβ+1(v) = gβ+1(u) +
∑
v∈M

gβ+1(v) +
∑
v∈N

gβ+1(v)

≤ gβ+1(u) + (1− g(u))β+1 + g(u)(1− g(u))β

= gβ+1(u) + (1− g(u))β ≤ 1,

where the last inequality follows from the fact that the function h(x) = xβ+1 + (1− x)β is strictly
convex and h(0) = h(1) = 1. This proves Lemma 2.1. �

Let G be a graph. We say that a set Z ⊆ V (G) is a homogeneous set in G if 1 < |Z| < |V (G)| and
V (G) \Z = A∪C where A is anticomplete to Z and C is complete to Z. In this case, we say that
(Z,A,C) is a homogeneous set decomposition of G. It was shown in [6] that

Lemma 2.2. Let G be a graph and let (Z,A,C) be a homogeneous set decomposition of G. Con-
struct G′ from G|(A ∪ C) by adding a vertex z that is complete to C and anticomplete to A. Let
P1 be a perfect induced subgraph of G′ with z ∈ V (P1) and let P2 be a perfect induced subgraph of
G|Z. Then G|(V (P1) ∪ V (P2) \ {z}) is perfect.

It was shown in [3] that homogeneous set decompositions preserve β-narrowness. For our purposes,
we will need a more general decomposition. We say that a set Z ⊆ V (G) is a quasi-homogeneous
set in G if there exists a partition (A,C) of V (G) \ Z such that the following properties hold:

• 1 < |Z| < |V (G)|.

• Either Z is complete to C or Z is anticomplete to A.

• Let G′ be obtained from G|(A∪C) by adding a vertex z that is anticomplete to A and complete
to C. Suppose that P1 is a perfect induced subgraph of G′ with z ∈ V (P1) and suppose P2 is
a perfect induced subgraph of G|X. Then the graph P = G|(V (P1)∪ V (P2) \ {z}) is perfect.

We say that the triple (Z,A,C) is a quasi-homogeneous set decomposition. In the light of Lemma 2.2,
it is easy to see that a homogeneous set decomposition is a special case of a quasi-homogeneous set
decomposition. Just like homogeneous set decompositions, quasi-homogeneous sets decompositions
preserve β-narrowness:

Lemma 2.3. Let G be a graph and let (Z,A,C) be a quasi-homogeneous set decomposition of G.
Let H1 be the graph obtained from G|(A∪C) by adding a vertex z anticomplete to A and complete
to C and let H2 = G|Z. If H1 and H2 are β-narrow, then G is β-narrow.

Proof. The proof is essentially the same as the proof of 1.3 in [3], but we include it here for
completeness. Let g be a covering function for G. For i = 1, 2, let Pi be the set of perfect induced
subgraphs of Hi. Let K = maxP∈P2

∑
v∈V (P ) g(v). Define g1 : V (H1) → R

+ as follows. For
v ∈ A ∪ C, let g1(v) = g(v) and let g1(z) = K. Define g2 : V (H2) → R

+ by g2(v) = g(v)/K for
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v ∈ V (H2). From the definition of a quasi-homogeneous set decomposition, it follows that for every
P1 ∈ P1 with z ∈ V (P1) and every P2 ∈ P2, G|(V (P1) ∪ V (P2) \ {z}) is perfect. It follows that g1
is a covering function for H1. Since H1 is β-narrow, it follows that

1 ≥
∑

v∈V (H1)

gβ1 (v) =
∑

v∈A∪C
gβ(v) +Kβ.

Clearly, g2 is a covering function for H2. Thus, since H2 is β-narrow, it follows that

1 ≥
∑

v∈V (H2)

gβ2 (v) =
∑
v∈Z

gβ(v)
Kβ

.

Therefore, ∑
v∈Z

gβ(v) ≤ Kβ.

Finally, it follows that∑
v∈V (G)

gβ(v) ≤
∑

v∈A∪C
gβ(v) +

∑
v∈Z

gβ(v) ≤ (1−Kβ) +Kβ = 1.

This proves Lemma 2.3. �

3 Graphs in Forb(Pc
4,P5,C6)

We start by additionally excluding the cycle of length six, C6. Throughout the paper, we will call
an induced subgraph of a graph G that is a cycle of length k a k-gon in G. We will often denote
the vertices of a k-gon H by, for example, h1, h2, . . . , hk in order. Any arithmetic involving the
subscripts of these vertices is modulo k. For a k-gon H, we say that v ∈ V (G)\V (H) is a center for
H, if v is complete to V (H). Analogously, we say that v is an anticenter for H if v is anticomplete
to V (H).

We say that a graph G ∈ Forb(P c4 , P5, C6) is a composite graph if there exist a 5-gon B in G and
a, c ∈ V (G) \ V (B) such that a is an anticenter for B and c is a center for B. We say that any
graph in G ∈ Forb(P c4 , P5, C6) is basic if it is not composite.

This section is organized as follows. We will first prove some basic properties of graphs in Forb(P c4 , P5, C6).
Next, we will show that composite graphs admit a quasi-homogeneous set decomposition. Finally,
we will show that basic graphs satisfy the assumptions of Lemma 2.1 with β = 1. This will imply
that all graphs in Forb(P c4 , P5, C6) are 2-narrow.

3.1 Elementary properties

We will repeatedly use the following lemmas:

(3.1) Let G ∈ Forb(P c4 ) and let f1-f2-f3-f4 be an induced path. Then no vertex is complete to
{f1, f2, f4} and non-adjacent to f3.
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Proof. Suppose for a contradiction that x is adjacent to f1, f2, and f4 and not to f3. Then
x-f3-f1-f4-f2 is a four-edge antipath, a contradiction. This proves (3.1). �

For a 5-gon H in a graph G, we call a vertex x ∈ V (G) \ V (H) that has a neighbor in V (H) an
attachment of H. The following lemma deals with attachments of 5-gons.

(3.2) Let G ∈ Forb(P c4 , P5) and let H be a 5-gon with vertices h1, h2, . . . , h5 in order. Let x ∈
V (G) \ V (H) with at least one neighbor in V (H). Then, for some for some i ∈ {1, 2, . . . , 5}, one
of the following holds:

(1) x is complete to V (H) (“center”), or

(2) x is adjacent to hi and x has no other neighbor in V (H) (“leaf of type i”), or

(3) x is adjacent to hi+2, hi+3 and x has no other neighbor in V (H) (“hat of type i”), or

(4) x is a adjacent to hi+4, hi+1, non-adjacent to hi+2, hi+3 and the adjacency between x and hi
is arbitrary (“clone of type i”).

Proof. If x is complete to V (H), then outcome (1) holds. From this and from the symmetry,
we may assume that x is adjacent to h1 and not to h2. First, suppose that x is adjacent to h3.
From (3.1) applied first to x and h1-h2-h3-h4 and then to x and h5-h1-h2-h3, it follows that x is
non-adjacent to h4 and h5 and thus outcome (4) holds. So we may assume that x is non-adjacent
to h3. If x is adjacent to h4, then outcome (4) holds. So we may assume that x is non-adjacent
to h4. If x is non-adjacent to h5, then outcome (2) holds. If x is adjacent to h5, then outcome (3)
holds. This proves (3.2). �

We call an attachment x of H a small attachment if x is a leaf or a hat for H. Let i ∈ {1, 2, . . . , 5}.
We call a pair of vertices (a, b) a pyramid of type i for H if a and b are adjacent, a is a leaf of type
i, and b is a hat of type i. We say that {a, b} is a pyramid if (a, b) or (b, a) is a pyramid. It turns
out that whenever two small attachments are adjacent, they are of the same type. The following
lemma deals with combinations of small attachments:

(3.3) Let G ∈ Forb(P c4 , P5, C6) and let H be a 5-gon. Suppose that u and v are small attachments
of H. Then the following two statements hold:

(a) If u and v are adjacent, then, up to symmetry, for some i ∈ {1, 2, . . . , 5}, either

(A1) u and v are leaves for H of type i; or

(A2) u and v are hats for H of type i; or

(A3) u is a leaf for H of type i, v is a hat for H of type i, and (u, v) is a pyramid of type i
for H.

(b) If u and v are non-adjacent, then, up to symmetry, for some i ∈ {1, 2, . . . , 5}, either
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(B1) u is a leaf of type i and v is a leaf of type j ∈ {i− 1, i, i+ 1}; or

(B2) u is a hat of type i and v is a hat of type j ∈ {i− 2, i, i+ 2}; or

(B3) u is a leaf of type i and v is a hat of type j ∈ {i− 2, i, i+ 2}.

Proof. Let h1, h2, . . . , h5 be the vertices of H in order. Since u and v are small attachments, each
of u, v is either a leaf or a hat for H.

For part (a), suppose that u and v are adjacent. First assume that u is a leaf. From the symmetry,
we may assume that u is a leaf of type 1 and v is either a leaf of type 1, 2 or 3, or a hat of type 1,
4 or 5. If v is a leaf of type 1, then outcome (A1) holds. If v is a hat of type 1, then outcome (A3)
holds. If v is a leaf of type 2 or a hat of type 4, then u-v-h2-h3-h4-h5 is an induced five-edge path, a
contradiction. If v is a leaf of type 3 or a hat of type 5, then u-v-h3-h4-h5-h1-u is an induced cycle
of length six, a contradiction. This finishes the case when u is a leaf. So we may now assume that
both u and v are hats. From the symmetry, we may assume that u is a hat of type 1 and v is a
hat of type 1, 2 or 3. If v is a hat of type 1, then outcome (A2) holds. If v is a hat of type 2, then
u-v-h5-h1-h2-h3-u is an induced cycle of length six, a contradiction. If v is a hat of type 3, then
the adjacencies of v with respect to the path u-h4-h5-h1 contradict (3.1). This proves part (a).

For part (b), suppose that u and v are non-adjacent. First assume that u is a leaf. From the
symmetry, we may assume that u is of type 1 and v is either a leaf of type 1, 2 or 3, or a hat of
type 1, 4, 5. If v is a leaf of type 1 or 2, then (B1) holds. If v is a leaf of type 3 or a hat of type
5, then u-h1-h5-h4-h3-v is an induced five-edge path, a contradiction. If v is a hat of type 1 or 4,
then outcome (B3) holds. This finishes the case when u is a leaf. We may therefore assume that
u and v are both hats for H. From the symmetry, we may assume that u is a hat of type 1 and
v is a hat of type 1, 2 or 3. If v is a hat of type 1 or 3, then (B2) holds. If v is a hat of type 2,
then u-h3-h2-h1-h5-v is an induced five-edge path, a contradiction. This proves part (b), thereby
completing the proof of (3.3). �

(3.4) Let G ∈ Forb(P c4 , P5). Let H be a 5-gon in G and suppose that x is a small attachment of
H. Then, every neighbor y ∈ V (G) \ V (H) of x is an attachment of H.

Proof. Suppose that y ∈ V (G) \ V (H) is adjacent to x but y has no neighbor in V (H). Let
h1, h2, . . . , h5 be the vertices ofH in order. We may assume that x is adjacent to h1 and anticomplete
to {h2, h3, h4}. Now y-x-h1-h2-h3-h4 is an induced five-edge path, a contradiction. This proves (3.4).

�

(3.5) Let G ∈ Forb(P c4 , P5, C6) and let H be a 5-gon. Let (a, b) and (a′, b′) be two disjoint pyramids
for H. Then (a, b) and (a′, b′) are pyramids of the same type.

Proof. Let h1, h2, . . . , h5 be the vertices of H in order. From the symmetry, we may assume that
(a, b) is a pyramid of type 1 and (a′, b′) is a pyramid of type 1, 2 or 3. If (a′, b′) is of type 1, then
the claim holds. If (a′, b′) is a pyramid of type 2, then b is a hat of type 1 for H and b′ is a hat of
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type 2 for H, contrary to (A2) and (B2) of (3.3). If (a′, b′) is a pyramid of type 3, then a is a leaf
of type 1 and a′ is a leaf of type 3 for H, contrary to (A1) and (B1) of (3.3). This proves (3.5). �

3.2 Composite graphs

Let G ∈ Forb(P c4 , P5, C6) be a graph. Our goal is to produce a quasi-homogeneous set. In order
to do so, we need to understand how different 5-gons interact with each other. To this end, we
consider the following auxiliary graph. Let B be a 5-gon in G and letW be a graph with the follows
properties:

(a) The vertices of W are 5-gons in G, and B is a vertex of W.

(b) Two 5-gons H and H ′ are adjacent if and only if one of the following holds:

(b1) |V (H) ∩ V (H ′)| = 4 and x ∈ V (H) \ V (H ′) is a clone for H ′. In this case, we say that
H and H ′ are clone neighbors and we call the edge HH ′ a clone edge.

(b2) B ∈ {H,H ′}, |V (H) ∩ V (H ′)| = 3 and {x, y} = V (H) \ V (H ′) is a pyramid for H ′.
In this case, we say that H and H ′ are pyramid neighbors and we call the edge HH ′ a
pyramid edge.

(c) W is connected.

We call such a graphW a C5-structure around B in G. Note that we do not require that all 5-gons
in G are vertices ofW. Also note that the adjacency of two 5-gons is well-defined because property
(b) is symmetric. We say that a C5-structure W is maximal if |V (W)| is maximal and, subject
to that, |E(W)| is maximal. Let U(W) =

⋃
H∈V (W) V (H) denote the set of vertices of G that are

‘covered’ by W.

Let H ∈ V (W) and let h1, h2, . . . , h5 be the vertices of H in order. Let i ∈ {1, 2, . . . , 5} and let x be
a clone of type i for H. We will write H/x = G|((V (H) \ {h1})∪ {x}) and we will say that H/x is
obtained from H by cloning hi and x is a clone in the position of hi. For two 5-gons F,H ∈ V (W),
let dist(F,H) be the number of edges in a shortest path from F to H in W.

Let us first prove a number of claims about C5-structures:

(3.6) Let G ∈ Forb(P c4 , P5) and let B be a 5-gon in G. Let W be a C5-structure around B. Suppose
that H ∈ V (W) and H ′ ∈ V (W) are clone neighbors. If c is a center for H, then c also a center
for H ′.

Proof. Let c be a center for H. From the definition of a clone edge, it follows that |V (H)∩V (H ′)| =
4. Since c is complete to V (H), it follows that c has at least four neighbors in V (H ′). Therefore,
it follows from (3.2) that c is complete to V (H ′). This proves (3.6). �
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(3.7) Let G ∈ Forb(P c4 , P5) and let B be a 5-gon in G. Let W be a maximal C5-structure around
B. Let c be a center for some 5-gon in V (W). Then either c is a center for every H ∈ V (W) or
c ∈ U(W).

Proof. If c is complete to all H ∈ V (W), then the claim holds. So we may assume that c is not
complete to at least one 5-gon in V (W). Let H1, H2 ∈ V (W) be such that c is complete to H1 but
not to H2 and, subject to that, such that dist(H1, H2) is minimum. Clearly, since c is complete to
V (H1) and not to V (H2), it follows that H1 6= H2. Since dist(H1, H2) is minimum, it follows that
H1 and H2 are neighbors. It follows from (3.6) that H1 and H2 are pyramid neighbors. We may
write H1 = h1-h2-h3-h4-h5-h1 and H2 = h1-a-b-h4-h5-h1. Since c is complete to V (H1), it follows
that c has at least three neighbors in V (H2). Hence, since c is not complete to V (H2), it follows
from (3.2) that c is a clone for H2. Therefore, H2/c is a 5-gon. From the maximality of W, it
follows that H2/c ∈ V (W) and, thus, that c ∈ U(W). This proves (3.7). �

(3.8) Let G ∈ Forb(P c4 , P5, C6) and let B be a 5-gon in G. Let W be a maximal C5-structure
around B. Suppose that H ∈ V (W) and H ′ ∈ V (W) are clone neighbors and let x be such that
H ′ = H/x. Let h1, h2, . . . , h5 be the vertices of H in order. Let i ∈ {1, 2, . . . , 5} and suppose that
(p, q) is a pyramid of type i for H. Then either

(1) (p, q) is also a pyramid of type i for H ′, or

(2) x is a clone of type j ∈ {i− 1, i+ 1} for H and x is complete to {p, q, hj}.

Proof. Let h1, h2, . . . , h5 be the vertices of H in order. From the symmetry, we may assume that
(p, q) is a pyramid of type 1 for H and x is a clone of type 1, 2 or 3 for H. First assume that x
is a clone of type 1 for H. It follows from (3.2) applied to q and H ′ that x is not adjacent to q.
Therefore, q is a hat for H ′. Since p is a neighbor of q, it follows from (3.4) that p has a neighbor in
V (H ′). It follows that p is adjacent to x. Thus, (p, q) is a pyramid for H ′ and outcome (1) holds.
Next, assume that x is a clone of type 2 for H. Then it follows from (3.2) applied to x and H ′ that
x is either complete or anticomplete to {p, q}. If x is anticomplete to {p, q}, then (p, q) is a pyramid
for H ′ and thus outcome (1) holds. If x is complete to {p, q}, then it follows from (3.3) that x is
adjacent to h2. Hence, outcome (2) holds. So we may assume that x is a clone of type 3 for H.
First suppose that p is adjacent to x. From (3.2) applied to x and the 5-gon h1-h2-h3-q-p-h1, it
follows that x is anticomplete to {q, h3}. But now the adjacencies of q with respect to h3-h4-x-p
contradict (3.1). This proves that p is non-adjacent to x. But now, since p is a leaf of type 1 for
H ′, q is a small attachment of H ′, and p and q are adjacent, it follows from (3.3) that q is a hat of
type 1 for H ′ and (p, q) is a pyramid for H ′. Hence, outcome (1) holds. This proves (3.8). �

The goal in this section is to prove the following:

(3.9) Let G ∈ Forb(P c4 , P5, C6) be a composite graph. Let B be a 5-gon in G and let A and C be the
set of vertices that are complete and anticomplete, respectively, to V (B). Let W be a maximal C5-
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structure around B. Then (U(W), A \U(W), C \U(W)) is a quasi-homogeneous set decomposition
of G.

As a first step in this direction, we prove the following lemma which states that U(W) does not
contain both all centers and all anticenters of B. This is useful, because in order for U(W) to be a
quasi-homogeneous set, we should have |U(W)| < |V (G)|.

(3.10) Let G ∈ Forb(P c4 , P5, C6) and let B be a 5-gon with both a center and an anticenter. Let W
be a maximal C5-structure around B. Then V (G) \ U(W) 6= ∅.

Proof. We may assume that all centers and all anticenters for B are contained in U(W).

(i) B and every pyramid neighbor of B in W has a pyramid.

We first claim that B has a pyramid. For suppose not. Let x be a center for B. Then it follows
from (3.6) that x is a center for all H ∈ V (W). In particular, for every H ∈ V (W), x 6∈ V (H).
Therefore, x 6∈ U(W), contrary to our assumption. Now let B′ be any pyramid neighbor of B.
Clearly, {p, q} = V (B) \ V (B′) is a pyramid for B′. This proves (i).

Now let a be an anticenter for B. We first show that:

(ii) a is anticomplete to every pyramid (p, q) for B and a is an anticenter for every pyramid
neighbor of B in W.

Let (p, q) be a pyramid for B. Suppose that z ∈ {p, q} is adjacent to a. Since z is a small
attachment of B, it follows from (3.4) that a has a neighbor in V (B), contrary to the assumption
that a is an anticenter for B. Since every pyramid neighbor H of B satisfies V (H) ⊆ (V (B) ∪
{p′, q′}) for some pyramid {p′, q′} for B, it follows from the above that a is an anticenter for
every pyramid neighbor of B. This proves (ii).

Since a ∈ U(W) there exists a 5-gon H∗ ∈ V (W) such that a ∈ V (H∗) and, subject to that,
such that dist(B,H∗) is minimum. Let P be a shortest path from H∗ to B in W and write
P = H∗-H1-H2- · · · -Hk, where Hk = B and k = dist(B,H∗). From the definition of a C5-
structure, it follows that all edges in P are clone edges, except possibly Hk−1-Hk.

(iii) H∗ = H1/a, k ≥ 2, and H1 is not a pyramid-neighbor of B.

First suppose that H1 = B. If H∗ and B are pyramid neighbors, then it follows from (ii)
that a is anticomplete to H∗, a contradiction. If H∗ and B are clone neighbors, then, since
|V (B) ∩ V (H∗)| = 4 and a has two neighbors in V (H∗), it follows that a has at least one
neighbor in B, contradicting the fact that a is an anticenter for B. This proves that H1 6= B

and, thus, that k ≥ 2. It follows from the definition of W that H∗-H1 is a clone edge. Since
a ∈ V (H∗) and a 6∈ V (H1), it follows that H∗ = H1/a. Since a has a neighbor in V (H1), it
follows from (ii) that H1 is not a pyramid neighbor of B. This proves (iii).
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(1) (2)

Figure 1: The outcomes of (v).

(iv) a is not a clone for H i for i ≥ 2.

Suppose that a is a clone for H i. Then H i/a-H i-H i+1- · · · -Hk is a path between B and a 5-gon
containing a that is shorter than P , contradicting the choice of H∗. This proves (iv).

Let h1, h2, . . . , h5 be the vertices of H1 in order. From the symmetry, we may assume that a is
adjacent to h2 and h5, and possibly to h1. Let us now consider H2.

(v) Up to symmetry, H2 is obtained from H1 by cloning h2. Let h′2 be such that H2 = H1/h′2.
Then h2 is non-adjacent to a, and either (see Figure 1)

(1) ah1 and h2h
′
2 are either both non-edges, or

(2) ah1 and h2h
′
2 are either both edges.

Moreover, k ≥ 3 and H2 is not a pyramid neighbor of B.

It follows from (iii) that H1 and H2 are clone neighbors. From the symmetry, we may assume
that H2 is obtained from H1 by cloning h1, h2, or h3. It follows from (iv) that H2 is not
obtained from H1 by cloning h1. Suppose next that H2 is obtained from H1 by cloning h3. Let
h′3 be such that H2 = H1/h3. It follows from (3.2) that a is a clone for H2, contradicting (iv).
Therefore, we may assume that H2 is obtained from H1 by cloning h2. Let h′2 be such that
H2 = H1/h′2. Because, from (iv), a is not a clone for H2, it follows that h′2 is non-adjacent to
a. If h′2 is adjacent to h2 and h1 is non-adjacent to a, then h2-h5-h′2-a-h1 is an induced four-edge
antipath, a contradiction. Likewise, if h′2 is non-adjacent to h2 and h1 is adjacent to a, then
h1-h3-a-h′2-h2 is a four-edge antipath, a contradiction. This proves that ah1 and h2h

′
2 are either

both edges or both non-edges.

Since a has a neighbor in H2, it follows that H2 6= B and hence that k ≥ 3. Using (ii), it
follows that H2 is not a pyramid neighbor of B. This proves (v).

Let H2 and h′2 be as in (v). It follows from (v) that we may now consider H3, H3 6= B and H3 is
not a pyramid neighbor of B. Therefore, H2 and H3 are clone neighbors.
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(vi) Up to symmetry, H3 is either (see Figure 2)

(1) obtained from H2 by cloning h5, h
′
5 ∈ V (H3) \ V (H2) is anticomplete to {a, h2, h5}, and

ah1, h
′
2h2 are non-edges; or

(2) obtained from H2 by cloning h5, h
′
5 ∈ V (H3) \ V (H2) is adjacent to h5 and anticomplete to

{a, h2}, and ah1, h
′
2h2 are edges, or

(3) obtained from H2 by cloning h1, h
′
1 ∈ V (H3) \ V (H2) is adjacent to h1 and anticomplete to

{a, h2}, and ah1, h
′
2h2 are edges.

Moreover, k ≥ 4 and H3 is not a pyramid neighbor of B.

Since H2 and H3 are clone neighbors, we may assume that H2 is obtained from H1 by cloning
h2. It follows from (v) that h′2 is non-adjacent to a. H3 is not obtained from H2 by cloning h′2,
because if it is, then H3 is adjacent to H1, contrary to the minimality of P .

Also note that H3 has no neighbor H ′ ∈ V (W) such that a is a clone for H ′. Because if so, then
H ′/a-H ′-H3-H4- · · · -Hk is a path between B and a 5-gon containing a that is shorter than P ,
a contradiction.

There are four cases to consider:

(a) H3 is obtained from H2 by cloning h1. (see Figure 3.a.) Let h′1 be such that H3 = H2/h′1.
If h′1 is adjacent to h2, then H3 is adjacent to H3/h2 in W and a is a clone for H3/h2, a
contradiction. Therefore, h′1 is non-adjacent to h2. First suppose that H2 satisfies outcome
(1) of (v). Since h1-h3-h′1-h2-h′2 is not an induced four-edge antipath, it follows that h′1 is
non-adjacent to h1. If h′1 is non-adjacent to a, then a and h2 are adjacent leaves of different
types for H3, contrary to (3.3). Therefore, h′1 is adjacent to a. But now h′1-h1-a-h′2-h5 is
an induced four-edge antipath, a contradiction. Next suppose that H2 satisfies outcome
(2) of (v). From the fact that a-h′2-h5-h2-h′1 is not an induced four-edge antipath, it
follows that a is non-adjacent to h′1. It follows, from the fact that h′2-h5-h2-h′1-h1 is not a
four-edge antipath, that h′1 is adjacent to h1. Hence, outcome (3) holds.

(1) (2) (3)

Figure 2: The outcomes of (vi).
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(b) H3 is obtained from H2 by cloning h3. (see Figure 3.b.) Let h′3 be such thatH3 = H2/h′3.
Suppose that h′3 is adjacent to a. Then, it follows from (3.2) that a is a clone for H3,
contrary to (iv). Hence, h′3 is non-adjacent to a. It follows that a is either a leaf of type 5
or a hat of type 3 for H3. If h′3 is adjacent to h2, then H3 is adjacent to H3/h2 in W and
a is a clone for H3/h3, a contradiction. Therefore, h′3 is non-adjacent to h2 and hence h2

is a leaf of type 1 for H3. But now a and h2 are small attachments of H3 but they have
different types, contrary to (3.3).

(c) H3 is obtained from H2 by cloning h4. (see Figure 3.c.) Let h′4 be such that H3 = H2/h′4.
From (3.2) applied to h2 and H3, it follows that h′4 is non-adjacent to h2 and, in particular,
that h2 is a clone for H3. But now H3 is adjacent to H3/h2 in W and a is a clone for
H3/h2, a contradiction.

(d) H3 is obtained from H2 by cloning h5. (see Figure 3.d.) Let h′5 be such thatH3 = H2/h′5.
From (3.2) applied to h2 and H3, it follows that h′5 is non-adjacent to h2 and, in particular,
that h2 is a clone for H3. Since a is not a clone for H3/h2, it follows that a is non-adjacent
to h′5. If H2 satisfies outcome (1) of (v), then because h1-a-h′5-h2-h5 is not an induced
four-edge antipath, it follows that h5 is non-adjacent to h′5 and hence outcome (1) holds.
If H2 satisfies outcome (2) of (v), then since h5-h′5-a-h4-h1 is not an induced four-edge
antipath, it follows that h5 is adjacent to h′5, and hence outcome (2) holds.

Now suppose that H3 = B or H3 is a pyramid neighbor of B. Since a is an anticenter for B
and for every pyramid neighbor of B, it follows that H3 satisfies outcome (1). It follows from
(i) and (ii) that H3 has a pyramid (p, q) that is anticomplete to a. From the symmetry, we
may assume that (p, q) is a pyramid of type 1, 2, or 3. First suppose that (p, q) is a pyramid of
type 1 for H3. It follows from (3.8) that {p, q} is anticomplete to {h2, h5}. But now h2 is a leaf
for the 5-gon F = h1-p-q-h4-h′5-h1, a is adjacent to h2 and a has no neighbor in F , contrary to
(3.4). Next suppose that (p, q) is a pyramid of type 2 for H3. Then it follows from (3.8) that p
is non-adjacent to h5. Hence, a is a leaf of type 5 and p is a leaf of type 2 for H3/h5, contrary
to (3.3). So we may assume that (p, q) is a pyramid of type 3 for H3. It follows from (3.8) that

(a) (b) (c) (d)

Figure 3: Potential neighbors of H2 if H2 satisfies (1) of (vi).
The “wiggly” edges represent arbitrary adjacencies.
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p is non-adjacent to h5. Hence, a is a leaf of type 5 and p is a leaf of type 3 for H3/h5, contrary
to (3.3). This proves that H3 is not B or a pyramid neighbor of B and therefore that k ≥ 4.
This proves (vi).

Let H3 be as in (vi). It follows from (vi) that we may now consider H4, which is a clone neighbor
of H3. Now, again, since P is a shortest path from a 5-gon that contains a to B, it follows that
there is no one- or two-edge path in W from H4 to a 5-gon for which a is clone.

First, suppose that H3 satisfies outcome (1) or (2) of (vi). Let h′5 be as in outcome (1) and (2) of
(vi). From the symmetry, we may assume that H4 is obtained from H3 by cloning h1, h′2, or h3.
We need to check a number of cases:

(a) H4 is obtained from H3 by cloning h1. Let h′1 be such that H4 = H3/h′1. First suppose that
h′1 is non-adjacent to h2. It follows that h2 is a leaf of type 3 or a hat of type 5 for H4. Since
a is adjacent to h2, it follows from (3.4) that a is adjacent to h′1. But now a is a leaf of type
1 for H4 and a is adjacent to h2, contrary to (3.3). Therefore, h′1 is adjacent to h2 and, from
the symmetry, h′1 is adjacent to h5. But now the path H4-H4/h2-H4/h2/h5 is a two-edge
path from H4 to a 5-gon for which a is clone, a contradiction.

(b) H4 is obtained from H3 by cloning h′2. Now H4-H4/h2-H4/h2/h5 is a two-edge path from
H4 to a 5-gon for which a is clone, a contradiction.

(c) H4 is obtained from H3 by cloning h3. Let h′3 be such that H4 = H3/h′3. From (3.2) applied
to h5 and H4, it follows that h′3 is non-adjacent to h5 and, in particular, that h5 is a clone
for H4. Since a is a not a clone for H4/h5, it follows from (3.2) that a is non-adjacent to
h′3. If h′3 is adjacent to h2, then H4-H4/h2-H4/h2/h5 is a two-edge path from H4 to a 5-gon
for which a is a clone, a contradiction. Hence, h′3 is non-adjacent to h2 and therefore h2 is a
small attachment of H4. Since a is adjacent to h2, it follows from (3.4) that a is adjacent to
h1 and hence that outcome (2) of (vi) holds. But now a is a leaf of type 1 for H4, h2 is a
hat of type 4 for H4, and a and h2 are adjacent, contrary to (3.3).

This proves that H3 does not satisfy outcome (1) or outcome (2) of (vi). So next suppose that H3

satisfies outcome (3) of (vi). We need to check a number of cases:

(a) H4 is obtained from H3 by cloning h′1. H4-H4/h1-H4/h1/h2 is a two-edge path from H4 to
a 5-gon for which a is clone, a contradiction.

(b) H4 is obtained from H3 by cloning h′2. Let h′′2 be such that H4 = H3/h′′2. Since a is not
a clone for H4, it follows that h′′2 is non-adjacent to a. If h′′2 is adjacent to h1, then
H4-H4/h1-H4/h1/h2 is a two-edge path from H4 to a 5-gon for which a is clone, a con-
tradiction. Therefore h′′2 is non-adjacent to h1. But now h1 is is a hat of type 3 and a is a
leaf of type 5 for H4, and h1 and a are adjacent, contrary to (3.4).

(c) H4 is obtained from H3 by cloning h3. Let h′3 be such that H4 = H3/h′3. It follows from
(3.2) that a is non-adjacent to h′3. From (3.2) applied to h1 and H4, it follows that h′3 is
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non-adjacent to h1. If h′3 is non-adjacent to h2, then h2 and a are leaves of type 3 and 5,
respectively, and a and h2 are adjacent, contrary to (3.3). Therefore, h′3 is adjacent to h2.
But now H4-H4/h1-H4/h1/h2 is a two-edge path from H4 to a 5-gon for which a is clone, a
contradiction.

(d) H4 is obtained from H3 by cloning h4. Let h′4 be such that H4 = H3/h′4. By (3.2) applied
to h1 and H4, it follows that h′4 is non-adjacent to h1. By (3.2) applied to h2 and H4/h1, it
follows that h′4 is non-adjacent to h2. By (3.2) applied to a and H4/h1/h2, it follows that h′4
is non-adjacent to a. But now H4-H4/h1-H4/h1/h2 is a two-edge path from H4 to a 5-gon
for which a is clone, a contradiction.

(e) H4 is obtained from H3 by cloning h5. Let h′5 be such that H4 = H3/h′5. From (3.2) applied
to h2 and H4, it follows that h′5 is non-adjacent to h2. If h′5 is non-adjacent to h1, then h1

and h2 are hats of type 4 and 5, respectively, and h1 and h2 are adjacent, contrary to (3.3).
Therefore, h′5 is adjacent to h1. Since h2 is a hat for H4 and a is adjacent to h2, it follows
from (3.4) that a is adjacent to h′5. But now H4-H4/h1-H4/h1/h2 is a two-edge path from
H4 to a 5-gon for which a is clone, a contradiction.

This proves that H3 does not satisfy any of the outcomes of (vi), a contradiction. This completes
the proof of (3.10). �

Next, we are interested in how vertices in V (G)\U(W) can attach to U(W) where W is a C5-
structure.

(3.11) Let G ∈ Forb(P c4 , P5, C6) and let B be a 5-gon. Let W be a maximal C5-structure around B.
Let x ∈ V (G) \ U(W) and assume that x is not a center for W. Let u and v be two non-adjacent
neighbors of x and assume that u ∈ U(W). Then, for every H ∈ V (W) such that u ∈ V (H), v is
a clone for H in the same position as u and, in particular, v ∈ U(W).

Proof.

(i) If (a, b) is a pyramid for some H ∈ V (W), then {a, b} ⊂ U(W).

Let H∗ be a 5-gon for which (a, b) is a pyramid and, subject to that, such that dist(H∗, B)
is minimum. Let h1, h2, . . . , h5 be the vertices of H∗ in order. From the symmetry, we may
assume that (a, b) is a pyramid of type 1 for H∗.

Let P be a shortest path from H∗ to B. It follows from the definition of a maximal C5-
structure that, if H∗ = B, then {a, b} ⊂ U(W). So we may assume that H∗ 6= B and hence
that |E(P )| ≥ 1. Let H1 be the neighbor of H∗ in P . Since H∗ was chosen with dist(H∗, B)
minimum, it follows that {a, b} is not a pyramid for H1.

First suppose that H1 is a clone neighbor of H∗. Let x be such that H1 = H∗/x. From (3.8) and
the fact that {a, b} is not a pyramid for H1, it follows that H1 is obtained from H∗ by cloning
h2 or h5 and x is complete to {a, b}. But now, from the maximality of W, H1-H1/b-H1/b/a is
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a path in W and hence {a, b} ⊂ U(W).

Therefore, we may assume that H1 is a pyramid neighbor of H∗. From the definition of a
maximal C5-structure and the fact that H∗ 6= B, it follows that H1 = B. Let {p, q} =
V (B) \V (H∗). We claim that either (p, q) or (q, p) is a pyramid of type 1. If {p, q}∩{a, b} = ∅,
then, since (a, b) is a pyramid of type 1 for H∗, it follows from (3.5) that (p, q) or (q, p) is
a pyramid of type 1 for H∗. If {p, q} ∩ {a, b} 6= ∅, then it follows from the definition of
a pyramid that (p, q) or (q, p) is a pyramid of type 1 for H∗. Hence, we may assume that
V (H1) = V (B) = {h1, p, q, h4, h5}. This proves that (p, q) or (q, p) is a pyramid of type 1. From
the symmetry, we may assume that (p, q) is a pyramid of type 1.

If (a, b) = (p, q), then {a, b} ⊂ V (B) and hence {a, b} ⊂ U(W). If a 6= p and b = q, then a is a
clone for B and b ∈ V (B) and, therefore, {a, b} ⊂ U(W). If a = p and b 6= q, then b is a clone
for B and a ∈ V (B) and, therefore, {a, b} ⊂ U(W).

So we may assume that {a, b} ∩ {p, q} = ∅. Now first suppose that a is adjacent to q. Then
a is a clone for B and b is a clone for B/a. Hence, by maximality of W, it follows that
B/a,B/a/b ∈ V (W) and, therefore, that {a, b} ⊂ U(W). Next, suppose that b is adjacent to p.
Then b is a clone for B and a is a clone for B/b. Hence, by maximality of W, it follows that
B/b,B/b/a ∈ V (W) and, therefore, that {a, b} ⊂ U(W).

It follows that we may assume that the only possible edges between {a, b} and {p, q} are ap
and bq. It follows from (3.3) that exactly one of ab and pq is an edge and hence that {a, b} is a
pyramid for B. If a is adjacent to p, then (b, a) is a pyramid of type 4 for B, contrary to (3.5).
If b is adjacent to q, then (a, b) is a pyramid of type 1 for B. By maximality of W, it follows
that {a, b} ⊂ U(W). This proves (i).

Let H ∈ V (W) such that u ∈ V (H) and let h1, h2, h3, h4, h5 be the vertices of H in order. From
the symmetry, we may assume that h1 = u. It follows from (3.7) and the assumption that x is not
a center for W that x is not complete to V (H). Moreover, since W is maximal and x 6∈ U(W), it
follows that x is not a clone for H. Therefore x is either a leaf or a hat for H. From the symmetry,
we may assume that x is anticomplete to {h2, h3, h4}, but possibly adjacent to h5. Because x is a
small attachment of H and u is adjacent to x, it follows from (3.4) that u has at least one neighbor
in V (H). Since u and v are non-adjacent, v is not complete to H. Hence, it follows from (3.2) that
v is either a small attachment or a clone for H.

First suppose that v is a small attachment of H. Then, from (3.3) and the fact that u and v

are non-adjacent, it follows that (x, v) is a pyramid for H. But now, by (i), {x, v} ⊂ U(W),
contradicting the fact that x 6∈ U(W).

So we may assume that v is a clone for H. If v is adjacent to h2 and h5, then the claim holds.
Therefore, we may assume that v is adjacent to at most one of h2, h5. Since u and v are non-
adjacent, it follows that v is a clone of type 3 or 4. If v is a clone of type 3, then it follows from
(3.2) that x is a clone for H/v and hence x ∈ U(W), a contradiction. If v is a clone type 4, then
again x is a clone for H/v and hence x ∈ U(W), a contradiction. This proves (3.11). �
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We are now in a position to prove (3.9).

Proof of (3.9). Let B be a 5-gon with a center and an anticenter and let W be a maximal
C5-structure around B. Let Z = U(W), let C be the set of centers for W and let A be V (G) \
(Z ∪ C). It follows from (3.10) that A ∪ C 6= ∅. We claim that (Z,A,C) is a quasi-homogeneous
set decomposition of G. Clearly, C is complete to Z. Let P be as in the definition of a quasi-
homogeneous set decomposition. Suppose that P is not perfect. Since P is an induced subgraph
of G, it does not have an induced four-edge antipath or an induced five-edge path. It follows that
P contains an induced cycle F of length five. Let f1, f2, . . . , f5 be the vertices of F in order.

(i) No edge of F has one endpoint in Z and one endpoint in C.

From the symmetry, we may assume that f1 ∈ Z and f2 ∈ C. Since C is complete to Z, and f4

is non-adjacent to f1 and f2, it follows that f4 ∈ A. Moreover, since f5 is non-adjacent to f2,
it follows for the same reason that f5 ∈ A ∪ C. If f5 ∈ A, then (3.11) with x = f5, u = f1 and
v = f4, implies that f4 ∈ Z, a contradiction. Therefore, we may assume that f5 ∈ C. Because
f3 is non-adjacent to f1 and f5, it follows that f3 6∈ C ∪ Z, and hence that f3 ∈ A. But now
z-f2-f3-f4-f5-z is an induced cycle of length five in P1, contradicting the fact that P1 is perfect.
This proves (i).

Let P ∗ be obtained from P by deleting all edges between A and Z. It follows from Lemma 2.2
that P ∗ is perfect. Therefore, F is not an induced subgraph of P ∗. It follows that there exist two
adjacent vertices a ∈ Z and b ∈ A such that a, b ∈ V (F ), say f1 = a and f2 = b.

Let H ∈ V (W) be such that f1 ∈ V (H). Let h1, h2, . . . , h5 be the vertices of H in order. We may
assume that f1 = h1.

(ii) No vertex w ∈ A is a clone or a center for H.

If w is a clone for H, then it follows from the maximality of W that w ∈ Z, a contradiction. If
w is a center for H, then it follows from (3.7) that w ∈ Z ∪C, a contradiction. This proves (ii).

(iii) f3 is a clone of type 1 for H and {f3, f4, f5} ⊂ Z.

Since f1 is non-adjacent to f3, it follows from (3.11) that f3 ∈ Z and f3 is a clone in the same
position as f1 for H. It follows from (i) that f5 ∈ A ∪ Z. Suppose that f5 ∈ A. Since f4 is
non-adjacent to f1, it follows from (3.11) that f4 is also a clone of type 1 for H. If f5 is adjacent
to both h5 and h2, then it follows from (3.2) that f5 is a clone or a center for H, contrary to
(ii). Therefore, from the symmetry, we may assume that f5 is non-adjacent to h2. But now
h2-f5-f3-f1-f4 is an induced four-edge antipath, a contradiction. This proves that f5 ∈ Z and,
from the symmetry, that f4 ∈ Z, and hence this proves (iii).

Since f5 is adjacent to f1, but not to f3, it follows that f5 6∈ V (H). Since f4 is adjacent to f3 but
not to f1, it follows that f4 6∈ V (H). It follows from (ii) that f2 is not a clone or a center for H
and hence that f2 is non-adjacent to h3 and h4.
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We claim that {f4, f5} anticomplete to {h2, h5}. For suppose not. From the symmetry, we may
assume that f4 is adjacent to h2. If f4 is non-adjacent to h5, then f3-f1-f4-h5-h2 is an induced
four-edge antipath, a contradiction. Therefore, f4 is adjacent to h5. If f2 is adjacent to both h2

and h5, then it follows from (3.2) that f2 is a clone or a center for H, contrary to (ii). Hence, from
the symmetry, we may assume that f2 is non-adjacent to h2. But now f3-f1-f4-f2-h2 is an induced
four-edge antipath, a contradiction. This proves that {f4, f5} anticomplete to {h2, h5}.

It follows from (3.4) applied to h3, h4 and h2-f3-f4-f5-f1-h2 that there is at least one edge between
{h3, h4} and {f4, f5}. From the symmetry, we may assume that f5 is adjacent to h4. It follows
from (3.2) applied to h4 and h5-f3-f4-f5-f1-h5 that h4 is non-adjacent to f4. It follows from (3.2)
applied to f5 and H that f5 is non-adjacent to h3. By applying (3.4) to h4, h3 and F , h3 has a
neighbor in V (F ). Therefore, h3 is adjacent to f4. But now h3 and h4 are adjacent leaves for F
that have different types, contradicting (3.3). This proves (3.9). �

3.3 Basic graphs

In the previous section, we showed that composite graphs in Forb(P c4 , P5, C6), i.e. graphs that have
a 5-gon with both a center and an anticenter, admit a quasi-homogeneous set decomposition. In
this section, we will analyze basic graphs. It turns out that if a graph does not contain a 5-gon
with both a center and an anticenter, then a ‘dual’ statement is also true: there is a no vertex that
simultaneously serves as a center for some 5-gon in G and as an anticenter for some other 5-gon in
G (we will prove this shortly). In particular, this implies that for every v ∈ V (G), either G|N(v)
or G|M(v) is perfect (and, equivalently, 1-narrow).

(3.12) Let G ∈ Forb(P c4 , P5, C6) and suppose that no 5-gon has both a center and an anticenter.
Then there do not exist v, A and B such that v ∈ V (G), A and B are 5-gons in B, and v is a
center for A and an anticenter for B.

Proof. Suppose that v is a center for a 5-gon A and an anticenter for a 5-gon B. Since v is
complete to V (A) and anticomplete to V (B), it follows that V (A) ∩ V (B) = ∅. Let a1, a2, . . . , a5

and b1, b2, . . . , b5 be the vertices of A and B, respectively, in order.

(i) Every x ∈ V (B) is a small attachment of A and all x ∈ V (B) are of the same type.

It follows from (3.2) that x is either an anticenter, or a small attachment, or a clone, or a center
for A. Since G is basic, A does not have an anticenter and, hence, x is not an anticenter for A.
Now suppose that x is a clone for A. It follows from (3.2) that v is adjacent to x, contradicting
the fact that v is anticomplete to V (B). This proves that every vertex in V (B) is either a small
attachment or a center for A.

Suppose that some vertex in V (B) is complete to V (A). Since B has no center, not all vertices
in V (B) are centers for A. Therefore, there are adjacent y, z ∈ V (B) such that y is complete
to V (A) and z is not. Therefore, z is a small attachment of A. Let a ∈ V (A) be a neighbor
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of z and let a′ ∈ V (A) be a non-neighbor of a. Since z is a small attachment of A, it follows
that a′ is non-adjacent to z. But now a-a′-z-v-y is an induced four-edge path, a contradiction.
This proves that every vertex in V (B) is a small attachment of A. Now suppose that not all
vertices of V (B) are of the same type with respect to A. Then there exist adjacent b, b′ ∈ V (B)
such that b and b′ are small attachments for A, but of different types, contradicting (3.3). This
proves (i).

(ii) Let x ∈ V (A). Then x is either a clone or an anticenter for B.

Suppose that x is not a clone or an anticenter for B. Since G is basic, B does not have a center
and, hence, x is not complete to V (B). Then it follows from (3.2) that x is a small attachment
of B. But now v is a neighbor of a small attachment of B and v has no neighbor in V (B),
contrary to (3.4). This proves (ii).

From (i) and the symmetry, we may assume that all b ∈ V (B) are of type 1. That is, for every
b ∈ V (B), b is either adjacent to a1 and anticomplete to {a2, a3, a4, a5}, or b is adjacent to a3 and
a4 and anticomplete to {a1, a2, a5}. Since B does not have a center, at least one of the vertices of
B is a leaf and at least one of them is a hat. From the symmetry, we may assume that b1 is a leaf
for A that is adjacent to a1. Since from (ii) every vertex of A is either a clone or an anticenter for
B, it follows that we may assume that a1 is adjacent to b4 and a1 is anticomplete to {b2, b3}. Since
a1 is anticomplete to {b2, b3}, it follows from (i) that b2 and b3 are complete to {a3, a4}. Because
b1 and b4 are leaves, it follows that {b1, b4} is anticomplete to {a3, a4}. Therefore, it follows from
(3.2) applied to a3 and B that a3 is a hat for B, contradicting (ii). This proves (3.12). �

We can now prove that

Theorem 3.13. Every graph G ∈ Forb(P c4 , P5, C6) is 2-narrow.

Proof. We prove this by induction on |V (G)|. If G is perfect, then G is 1-narrow and there
is nothing to prove. So we may assume that G is not perfect. From the fact that G has no
induced four-edge antipath and no induced five-edge path, it follows that G contains a 5-gon. First
suppose that G contains a 5-gon with a center and an anticenter. Then, by (3.9), G admits a
quasi-homogeneous set decomposition (Z,A,C). Let G′ be the graph obtained from G|(A ∪ C) by
adding a vertex z anticomplete to A and complete C. By the induction hypothesis, G′ and G|Z are
2-narrow. It follows from Lemma 2.3 that G is 2-narrow. So we may assume that G has no 5-gon
that has both a center and an anticenter. Let v ∈ V (G). It follows from the induction hypothesis
that G|N(v) and G|M(v) are both 2-narrow. Moreover, it follows from (3.12) that either G|N(v)
or G|M(v) is perfect and hence 1-narrow. Since this is true for every v ∈ V (G), it follows from
Lemma 2.1 that G is 2-narrow. This proves Theorem 3.13. �
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4 Graphs in Forb(Pc
4,P5)

In this section, we will prove that every graph in Forb(P c4 , P5) is 3-narrow. Let G ∈ Forb(P c4 , P5)
and suppose that G does not contain a 6-gon with a center. Then it follows that G|N(v) ∈
Forb(P c4 , P5, C6) for every v ∈ V (G). In the previous section, we proved that therefore G|N(v) is
2-narrow for every v ∈ V (G). Now we may apply Lemma 2.1 to conclude that G is 3-narrow (for
details, see the proof of Theorem 1.2 at the end of this section). The remaining case is when G

does contain a 6-gon with a center. We deal with this case in (4.2). We will start with a lemma
that deals with attachments of 6-gons.

(4.1) Let G ∈ Forb(P c4 , P5) and let H be a 6-gon in G with vertices h1, h2, . . . , h6 in order. Let
v ∈ V (G) \ V (H) and suppose that v has a neighbor and a non-neighbor in V (H). Then, up to
symmetry, either

(x) v is complete to {h1, h3, h5} and v is anticomplete to {h2, h4, h6}, or

(y) v is complete to {h3, h6}, v is anticomplete to {h1, h2} and v is either complete or anticomplete
to {h4, h5}, or

(z) v is complete to {h1, h3}, anticomplete to {h4, h5, h6}, and the adjacency between v and h2 is
arbitrary.

Proof. We may assume that v is adjacent to h1 and non-adjacent to h2. Suppose that v is adjacent
to h3. Since h1-h2-h3-h4 is an induced path, and v is complete to {h1, h3} and non-adjacent to h2, it
follows from (3.1) that v is non-adjacent to h4. From the symmetry, it follows that v is non-adjacent
to h6. If v is adjacent to h5, then (x) holds. If v is non-adjacent to h5, then (z) holds. So we may
assume that v is non-adjacent to h3. If v is non-adjacent to h4, then, since v-h1-h2-h3-h4-h5 is not
an induced five-edge path, it follows that v is adjacent to h5 and (z) holds. So we may assume
that v is adjacent to h4. Because h4-h5-h6-h1 is an induced path and v is adjacent to h1 and h4, it
follows from (3.1) that v is either complete or anticomplete to {h5, h6}. Therefore, (y) holds. This
proves (4.1). �

Let G ∈ Forb(P c4 , P5) and let H be a 6-gon in G. We call a vertex v ∈ V (G) \ V (H) an (x)-
vertex, (y)-vertex, or (z)-vertex for H if v satisfies (x), (y), or (z) of (4.1), respectively. Let
z ∈ V (G) \ V (H) be a (z)-vertex for H. Then, there exists a unique vertex h ∈ V (H) such that
H ′ = G|((V (H) \ {h}) ∪ {z}) is a 6-gon. We say that H ′ is the 6-gon obtained from rerouting H
through z.

(4.2) Let G ∈ Forb(P c4 , P5) and suppose that G contains a 6-gon with a center. Then G admits a
quasi-homogeneous set decomposition.

Proof. Let H be a 6-gon with a center and let h1, h2, . . . , h6 be the vertices of H in order. Let C
be the set of vertices that are complete to V (H). Notice that C 6= ∅. Let X, Y , and Z be the sets
of (x)-vertices, (y)-vertices, and (z)-vertices for H, respectively.
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(i) C is complete to X ∪ Y ∪ Z.

Let c ∈ C and z ∈ Z. Let H ′ be the 6-gon obtained from rerouting H through z. Then c has at
least five neighbors in V (H ′) and, hence, (4.1) implies that c is adjacent to z. This proves that
C is complete to Z. Now let x ∈ X. From the symmetry, we may assume that x is complete
to {h1, h3, h5} and anticomplete to {h2, h4, h6}. Since h6-h1-x-h3 is an induced path and c is
complete to {h1, h3, h6}, it follows from (3.1) that c is adjacent to x. Hence, C is complete to X.
Next, let y ∈ Y . We may assume that y is complete to {h3, h6} and anticomplete to {h1, h2}.
Then h1-h6-y-h3 is an induced path and c is complete to {h1, h3, h6}. It follows from (3.1) that
y is adjacent to c and hence that Y is complete to C. This proves (i).

Let Y ′ be the set of vertices in V (G) \ (V (H) ∪ C ∪ X ∪ Y ∪ Z) with a neighbor in Y . Let X ′

be the set of vertices in V (G) \ (V (H) ∪ C ∪ X ∪ Y ∪ Z ∪ Y ′) with a neighbor in X. Let X ′′ be
the set of the vertices in V (G) \ (V (H) ∪ C ∪ X ∪ Y ∪ Z ∪ Y ′ ∪ X ′) with a neighbor in X ′. Let
A = V (G)\ (V (H)∪C ∪X ∪Y ∪Z ∪Y ′∪X ′∪X ′′). Since (A∪X ′∪X ′′∪Y ′)∩ (X ∪Y ∪Z ∪C) = ∅,
(4.1) implies that A ∪ Y ′ ∪X ′ ∪X ′′ is anticomplete to V (H). It follows from the definition of Y ′,
X ′, X ′′, and A that X ′ ∪ X ′′ ∪ A is anticomplete to Y , X is anticomplete to X ′′ ∪ A, and X ′ is
anticomplete to A.

(ii) Z is anticomplete to A∪X ′ ∪X ′′ ∪Y ′, Y ′ is anticomplete to A∪X ′ ∪X ′′, A is anticomplete
to X ′′, and X is anticomplete to Y .

First, suppose that z ∈ Z is adjacent to a ∈ A∪X ′∪X ′′∪Y ′. Let H ′ be obtained from rerouting
H through z. Then it follows that a has exactly one neighbor in V (H ′), contrary to (4.1). This
proves that Z is anticomplete to A ∪X ′ ∪X ′′ ∪ Y ′.

Next, suppose that y′ ∈ Y ′ is adjacent to a ∈ A ∪X ′ ∪X ′′. Let y ∈ Y be a neighbor of y′. We
may assume that y is adjacent to h3 and not to h1 and h2. Now h1-h2-h3-y-y′-a is an induced
five-edge path, a contradiction. This proves that Y ′ is anticomplete to A ∪X ′ ∪X ′′.

Next, suppose that x′′ ∈ X ′′ is adjacent to a ∈ A. Then let x′ ∈ X ′ be a neighbor of x′′ and let
x ∈ X be a neighbor of x′. From the symmetry, we may assume that x is adjacent to h1 and
not to h2. Then h2-h1-x-x′-x′′-a is an induced five-edge path, a contradiction. This proves that
A is anticomplete to X ′′.

Finally, suppose that x ∈ X and y ∈ Y are adjacent. From the symmetry, we may assume that
x is complete to {h1, h3, h5} and anticomplete to {h2, h4, h6}, and that y is complete to {h3, h6}
and anticomplete to {h1, h2}. Now, h1-h2-h3-y is an induced path, x is complete to {h1, h3, y}
and x is non-adjacent to h2, contrary to (3.1). This proves (ii).

The following two claims deal with the case when Y 6= ∅.

(iii) Suppose that Y 6= ∅. Then there do not exist x, p, q such that x ∈ X∪Y , p, q ∈ X ′∪X ′′∪Y ′,
and x-p-q is an induced path.
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Suppose that Y 6= ∅ and suppose that such x, p, q exist. First suppose that x ∈ Y . We may
assume that x is complete to {h3, h6} and anticomplete to {h1, h2}. Now h1-h2-h3-x-p-q is an
induced five-edge path, a contradiction. We may therefore assume that x ∈ X. Let y ∈ Y .
It follows from (ii) that y is non-adjacent to x. From the symmetry, we may assume that x
is complete to {h1, h3, h5}, y is complete to {h3, h6} and y is anticomplete to {h1, h2}. Since
q-p-x-h1-h6-y is not an induced five-edge path, it follows that y is adjacent to at least one of p
and q. Because we already proved that no vertex in Y forms a two-edge induced path with p

and q, it follows that y is complete to {p, q}. But now x-h3-y-q is an induced path, p is complete
to {x, y, q}, and p is non-adjacent to h3, contrary to (3.1). This proves (iii).

(iv) If Y 6= ∅, then the lemma holds.

Suppose that Y 6= ∅. We claim that X ′′ = ∅. For suppose that x′′ ∈ X ′′. Then let x′ ∈ X ′ be a
neighbor of x′′, and let x ∈ X be a neighbor of x′. Then x-x′-x′′ is an induced path with x ∈ X
and x′, x′′ ∈ X ′ ∪X ′′, contrary to (iii). This proves that X ′′ = ∅.

Let A′ be the union of all the components K of G|(X ′ ∪ Y ′) such that C is not complete to K.
Let N = A ∪ A′ and U = (V (H) ∪ X ∪ Y ∪ Z ∪ X ′ ∪ Y ′) \ A′. We claim that (U,N,C) is a
quasi-homogeneous set decomposition of G. It follows from (i) and the definition of A′ that C
is complete to U . Let P be as in the definition of a quasi-homogeneous set decomposition and
suppose that P is not perfect. Since P is an induced subgraph of G, it does not have an induced
four-edge antipath or an induced five-edge path. It follows that P contains an induced cycle F
of length five. Let f1, f2, . . . , f5 be the vertices of F in order. Let P ∗ be obtained from P by
deleting all edges between U and N . It follows from Lemma 2.2 that P ∗ is perfect. Therefore,
F is not an induced subgraph of P ∗. It follows that there exist two adjacent vertices a ∈ U and
b ∈ N such that a, b ∈ V (F ), say f1 = a and f2 = b.

It follows from (ii) that A is anticomplete to U . Hence, because f1 and f2 are adjacent, it follows
that f2 6∈ A and therefore f2 ∈ A′. It follows from the definition of A′ that f1 6∈ V (H)∪X ′∪Y ′∪Z
and hence f1 ∈ X ∪ Y . Now let us consider f3. Since f3 is adjacent to f2, it follows that
f3 ∈ X ∪ Y ∪ A′ ∪ C. If f3 ∈ A′, then f1-f2-f3 is an induced path with f1 ∈ X ∪ Y and
f2, f3 ∈ X ′ ∪ Y ′, contrary to (iii). Since f1 ∈ X ∪ Y , C is complete to X ∪ Y , and f3 is
non-adjacent to f1, it follows that f3 6∈ C, and therefore f3 ∈ X ∪ Y . Now let us consider f4

and f5. If both f4 and f5 are in X ′ ∪ Y ′, then f3-f4-f5 is an induced path with f3 ∈ X ∪ Y
and f4, f5 ∈ X ′ ∪ Y ′, contrary to (iii). Therefore, from the symmetry, we may assume that
f4 6∈ X ′ ∪ Y ′. Since f4 is adjacent to f3, this implies that f4 ∈ V (H) ∪ C ∪X ∪ Y ∪ Z. Since
f4 is not adjacent to f1 and C is complete to f1, it follows that f4 6∈ C. Therefore, (i) implies
that f4 is complete to C. This proves that C is complete to {f1, f3, f4}.

Let K ′ be the component of A′ that contains f2. We claim that f1 is complete to K ′. For
suppose not. Because f1 is adjacent to f2 ∈ K ′, it follows that there exist adjacent k1, k2 ∈ K ′

such that f1 is adjacent to k1 and not to k2. But now f1-k1-k2 is an induced path with f1 ∈ X∪Y
and k1, k2 ∈ X ′ ∪ Y ′, contrary to (iii). This proves that f1 is complete to K ′ and, from the
symmetry, that f3 is complete to K ′. Similarly, and since V (H) is anticomplete to K ′, it follows
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that f4 is anticomplete to K ′.

Since K ′ is not complete to C by the definition of A′, we may choose f ′2 ∈ K ′ and c ∈ C such
that f ′2 is non-adjacent to c (perhaps by choosing f ′2 = f2). It follows from the above that f ′2
is adjacent to f1 and f3. Therefore, f1-f ′2-f3-f4 is an induced path. It follows from the above
that c is complete to {f1, f3, f4} and non-adjacent to f2, contrary to (3.1). This proves (iv).

In view of (iv), we may from now on assume that no 6-gon in G has a (y)-vertex.

(v) If Z 6= ∅, then the lemma holds.

Suppose that Z 6= ∅. From the symmetry, we may assume that there exists z ∈ Z such that z is
adjacent to h2 and h6. Let Z ′1 be the set of vertices in Z that are adjacent to h2 and h6 and let
Z1 = Z ′1 ∪ {h1}. It follows from the definition of Z1 that |Z1| ≥ 2. Let R be the set of vertices
in V (G) \ Z1 with a neighbor in Z1 and let S = V (G) \ (Z1 ∪ R). We claim that (Z1, S,R) is
a homogeneous set decomposition of G. For suppose not. Then there exist v ∈ V (G) \ Z1 and
x, y ∈ Z1 such that v is adjacent to x and non-adjacent to y. It follows from the definition of
Z1 that v 6∈ V (H). Let H ′ = x-h2-h3- . . . -h6-x. Since H ′ has no (y)-vertex and C is complete
to Z1 by (i), it follows from (4.1) that v is either an (x)-vertex or a (z)-vertex for H ′. It follows
that v is anticomplete to h4 and, since v 6 inZ1, v is adjacent to at least one of h3, h5. From
the symmetry, we may assume that v is adjacent to h3. It follows from the fact that v is either
an (x)-vertex of a (z)-vertex for H ′, that v is non-adjacent to h6. Since y-h6-x-v-h3-h4 is not
an induced five-edge path, it follows that x is adjacent to y. If v is non-adjacent to h2, then
x-h3-y-v-h2 is an induced four-edge antipath, a contradiction. Therefore, v is adjacent to h2

and hence v is a (z)-vertex for H ′, and v is non-adjacent to h5. But now the adjacency of v
with respect to the 6-gon y-h2-h3- . . . -h6-y contradicts (4.1). This proves that (Z1, R, S) is a
homogeneous set decomposition of G. Since a homogeneous set decomposition is a special case
of a quasi-homogeneous set decomposition, this proves (v).

In view of (v), we may from now on assume that Z = ∅. Let X1 and X2 be the vertices in X that
are complete to {h1, h3, h5} and {h2, h4, h6}, respectively.

(vi) Suppose that u ∈ X1 and v ∈ X2 are non-adjacent. If z ∈ V (G) is a common neighbor of u
and v, then z ∈ C.

By the definition of X1 and X2, u and v have no common neighbor in V (H) and, thus, z ∈
V (G) \ V (H). Consider the 6-gon H ′ = u-h1-h6-v-h4-h3-u. Since z is adjacent to u and v, it
follows from (4.1) and the fact that no 6-gon in G has a (y)-vertex, that z is a center for H ′.
But now z has at least four neighbors in V (H) and therefore, by (4.1) and since Y = ∅, z ∈ C.
This proves (vi).

Let N = A∪X ′ ∪X ′′. We claim that (V (H), N,C ∪X) is a quasi-homogeneous set decomposition
of G. We observe that N is anticomplete to V (H). Let P be as in the definition of a quasi-
homogeneous set decomposition and suppose that P is not perfect. Since P is an induced subgraph
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of G, it does not have an induced four-edge antipath or an induced five-edge path. It follows that P
contains an induced cycle F of length five. Let f1, f2, . . . , f5 be the vertices of F in order. Let P ∗ be
obtained from P by adding all edges between V (H) and X. It follows from Lemma 2.2 that P ∗ is
perfect. Therefore, F is not an induced subgraph of P ∗. It follows that there exist two non-adjacent
vertices a ∈ V (H) and b ∈ X such that a, b ∈ V (F ), say a = f1 and f3 = b. From the symmetry,
we may assume that a = f1 = h1. Since a and b are non-adjacent, it follows that f3 ∈ X2. Now
let us consider f5. From the fact that f5 is adjacent to f1, it follows that f5 ∈ V (H) ∪ C ∪ X1.
Because f3 is non-adjacent to f5, it follows that f5 6∈ V (H). Moreover, since C is complete to X2,
f3 ∈ X2 and f3 is non-adjacent to f5, it follows that f5 6∈ C and, hence, f5 ∈ X1. Now f4 is a
common neighbor of f3 ∈ X2 and f5 ∈ X1. Therefore, by (vi), it follows that f4 ∈ C and so f4 is
adjacent to f1, a contradiction. This proves (4.2). �

We are now in a position to prove Theorem 1.2:

Proof of Theorem 1.2. We prove the theorem by induction on |V (G)|. Let G ∈ Forb(P c4 , P5).
Suppose first thatG contains a 6-gon with a center. Then it follows from (4.2) thatG admits a quasi-
homogeneous set decomposition. Hence, it follows from Lemma 2.3 and the induction hypothesis
that G is 3-narrow. So we may assume that G contains no 6-gon with a center. Now let v ∈ V (G).
Clearly, G|N(v) does not have C6 as an induced subgraph. Therefore, G|N(v) ∈ Forb(P c4 , P5, C6)
and hence, by Theorem 3.13, G|N(v) is 2-narrow. By the induction hypothesis, it follows that
G|M(v) is 3-narrow. Since this is true for every v ∈ V (G), it follows from Lemma 2.1 that G is
3-narrow. This proves Theorem 1.2. �
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